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Modeling Bidirectional Texture Functions with
Multivariate Spherical Radial Basis Functions
Yu-Ting Tsai, Kuei-Li Fang, Wen-Chieh Lin, Member, IEEE, and Zen-Chung Shih, Member, IEEE

Abstract—This paper presents a novel parametric representation for bidirectional texture functions. Our method mainly relies on two
original techniques, namely multivariate spherical radial basis functions (SRBFs) and optimized parameterization. Firstly, since the
surface appearance of a real-world object is frequently a mixed effect of different physical factors, the proposed sum-of-products
model based on multivariate SRBFs especially provides an intrinsic and efficient representation for heterogenous materials. Secondly,
optimized parameterization particularly aims at overcoming the major disadvantage of traditional fixed parameterization. By using
a parametric model to account for variable transformations, the parameterization process can be tightly integrated with multivariate
SRBFs into a unified framework. Finally, a hierarchical fitting algorithm for bidirectional texture functions is developed to exploit spatial
coherence and reduce computational cost. Our experimental results further reveal that the proposed representation can easily achieve
high-quality approximation and real-time rendering performance.

Index Terms—Reflectance and shading models, bidirectional texture functions, parameterization, spherical radial basis functions.
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1 INTRODUCTION

R EAL-WORLD surface reflectance, micro-scale appear-
ance, and realistic lighting effects are too com-

plicated to be described with simple analytic models.
State-of-the-art data-driven rendering algorithms thus
synthesize high-quality images from precomputed or
measured reflectance data. Over the last decades, there
have been tremendous advances in this field. For exam-
ple, image-based rendering methods [1], [2], [3] generate
virtual images from novel view directions by interpolat-
ing pre-captured images. Since they assume no specific
reflectance characteristics of object surfaces, appearance
of real-world objects can be faithfully rendered.

Moreover, the pioneering work by Dana et al. [4]
further introduced the bidirectional texture function (BTF)
to model spatially-varying reflectance distributions over
a 2D surface. A BTF is a 6D function that combines
textures and bidirectional reflectance distribution functions
(BRDFs) to account for the appearance of a 2D surface
under various illumination and view conditions. There-
fore, images rendered from measured BTFs can realisti-
cally exhibit complex lighting effects and detailed meso-
structures of real-world objects, including the micro-
geometry of rough surfaces, self-shadows, and multiple
light scattering. In addition to rendering applications,
BTFs provide realistic texture models for computer vi-
sion applications, such as segmentation, robust visual
classification, retrieval or illumination/view invariant
methods dealing with images of textured natural ma-
terials [5]
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Nevertheless, a compact and efficient representation
for BTFs remains challenging in practice. The enormous
amount of BTF data frequently becomes the performance
bottleneck at run-time and prohibits further analysis in
computer vision and graphics applications. This chal-
lenge thus has stimulated the recent development of
sophisticated approximation algorithms for large-scale
surface appearance data [6], [7], [8], [9], [10], [11], [12].
In addition to the challenge of dealing with tremendous
data size, a BTF data set is a mixed effect of various
types of physical factors. This high-dimensional nature
is so complicated that simple analytic models often fail
to describe the multivariate behavior of a BTF.

In this paper, we introduce a novel functional repre-
sentation to solve the tremendous data size and com-
plex behavior problems in BTF modeling. The complex
behaviors of a reflectance function are described as a
weighted sum of the products of several univariate ba-
sis functions, which form a multivariate representation.
Specifically, we decompose a reflectance field as a linear
combination of multivariate spherical radial basis functions
(SRBFs), while each multivariate SRBF is constructed
from the product of several univariate SRBFs1 [13]. Al-
though the optimization process of such a general model
may be difficult, our experimental results demonstrate
that a fast and practical implementation is feasible even
for large-scale appearance data sets such as BTFs.

To obtain a compact representation, it is also well-
known that transforming the parameters of a reflectance
function into another parametric space, which we refer to
as parameterization, can improve approximation efficiency
[9], [14], [15], [16]. However, previous articles have
considered only fixed transformation functions, little

1. Throughout this paper, the univariate SRBF is referred to as the
original SRBF that was introduced by Tsai and Shih [13].
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attention has been paid to a data-dependent method
[17], [18]. In this paper, we further propose to learn
a set of optimized parameterization functions for a
given reflectance data set. By using a parametric rep-
resentation to model the transformation functions, the
parameterization process can be tightly integrated into
our multivariate optimization framework. Previous fixed
transformation methods, such as the half-way vector,
thus become special cases in this general framework.

It should be noted that the multivariate SRBF rep-
resentation and optimized parameterization only focus
on BRDF modeling. For spatially-varying materials like
BTFs, we adopt the apparent BRDF representation [5],
[10], [19], [20]. Since this representation describes a BTF
as a set of texelwise BRDFs, we can apply the proposed
model to separately approximate the reflectance data
of each texel. However, directly optimizing the model
parameters of each texel is time-consuming. We thus
further propose a hierarchical fitting algorithm to exploit
spatial coherence in a BTF and reduce the computational
cost.

In summary, this paper makes the following contribu-
tions:

• A compact functional representation based on a
linear combination of multivariate SRBFs is intro-
duced to efficiently model the complex behaviors of
measured reflectance fields. Since our representation
is a series of continuous functions, no additional
interpolation or filtering techniques are required for
rendering reflectance functions from novel illumina-
tion and view directions at run-time.

• An automatic parameterization framework is pro-
posed to learn the best parameter transformation
function from a given reflectance data set and a
given form of transformation with unknown param-
eters. It can seamlessly cooperate with our multi-
variate representation to improve the approximation
efficiency for reflectance functions.

• A hierarchical fitting algorithm for BTFs is presented
to exploit spatial coherence and accelerate the ap-
proximation process. It is particularly suitable for
multi-resolution analysis and data-driven rendering
applications due to the inherent mipmap pyramid
construction.

• The overall result of this paper is a compact and
hardware-friendly representation for BTFs, which
can be easily implemented on modern graphics pro-
cessing units (GPUs).

The remainder of this paper is organized as follows.
First, the literature on parameterization and approxima-
tion methods for surface appearance models is reviewed
in Section 2. We then describe the main ideas of this pa-
per by introducing the multivariate SRBF representation
in Section 3 and the optimized parameterization frame-
work in Section 4. A hierarchical fitting algorithm for
BTFs and other practical implementation details, such as
the initial guess of the multivariate SRBF representation,

parameter optimization process, and run-time rendering,
are respectively presented in Section 5 and Section 6.
Finally, we demonstrate and discuss the experimental
results in Section 7, and conclude this paper in Section
8 to shed some lights on future research directions.

2 RELATED WORK

In this section, we first briefly review some previous
parameterization methods for reflectance functions (Sec-
tion 2.1). We also summarize three main categories of
modern approximation algorithms for reflectance fields:
functional linear models (Section 2.2), non-parametric
models (Section 2.3), and probabilistic models (Section
2.4). Due to limited paper length, our review mostly
concentrates on BTFs. For a comprehensive survey on
BTF modeling in computer vision and graphics, inter-
ested readers may further refer to [5].

2.1 Parameterization of Reflectance Functions
Half-way [15] and reflected vector [21] parameteriza-
tions for BRDFs have been shown to be effective in
modeling highly specular materials. Stark et al. [22]
also proposed several physically interpretable parame-
terizations for isotropic BRDFs. Although their method
naturally forms a barycentric coordinate system that
contains some geometric information, it does not pro-
vide data-dependent parameterizations for different real-
world BRDFs. Namely, the parameterizations proposed
in [22] are all fixed. In recent years, various fixed
parameterizations have been applied to approximate
spatially-varying surface appearance [9], [16], further
demonstrating their promising potentials. In general, pa-
rameterization is beneficial to reduce the dimensionality
of reflectance functions, which leads to a compact and
low-dimensional representation for surface appearance.
It also greatly increases the data coherence that can be
exploited by various approximation algorithms.

Nevertheless, previous parameterization techniques
are limited to fixed transformation functions. It is un-
known which parameter transformation would perform
the best for the reflectance data at hand. Although
Cole [17] introduced an automatic and data-dependent
parameterization method for BRDFs, this approach is
limited to linear transformations. By contrast, we pro-
pose to learn the best parameterization functions from
data, within a certain non-linear functional form, by
introducing additional parameters into our appearance
representation. The proposed method thus successfully
combines parameterization and reflectance model esti-
mation in a unified framework to fill the gap between
these two problems that have been solved separately in
previous methods.

2.2 Functional Linear Models
Functional linear analysis of materials has received great
attention in real-time rendering applications due to its
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compactness and efficiency. The main concept is to
expand a reflectance function as a linear combination
of simple basis functions. In this category, choosing an
appropriate basis is one of the major research issues as it
significantly influences image quality and rendering per-
formance. Previous approaches have modeled (spatially-
varying) reflectance fields using parametric kernels [7],
[23], [24], [25], polynomials [26], [27], radial basis func-
tions [12], [16], [28], [29], spherical harmonics [21], [30],
[31], and wavelets [32]. In general, kernel and radial
basis functions provide efficient run-time rendering per-
formance and high image quality for all-frequency ma-
terials. However, they usually require computationally
expensive non-linear optimization for parameter estima-
tion, which becomes even worse and impractical when
modeling materials with spatially-varying reflectance.

In this paper, we propose to describe a reflectance
function as a weighted sum of the products of several
univariate basis functions, and take a step further to
search for data-dependent parameterization for illumi-
nation and view variations. This general weighted sum-
of-products representation not only models the complex
multivariate behavior of reflectance functions, but also
includes various popular parametric reflection models
as its subset. Moreover, under the proposed hierarchical
optimization framework, our experimental results show
that the time-consuming non-linear parameter fitting
process for BTFs can be robustly pre-conditioned and
accelerated by a bottom-up approach, leading to a multi-
resolution representation and an efficient off-line algo-
rithm.

2.3 Non-Parametric Models

Non-parametric models can be regarded as functional
models that do not have pre-defined forms of basis
functions. In this category, an appropriate basis is learnt
from data for an accurate representation, rather than
prior information specified by researchers. The most
popular approaches in computer vision and graphics
include clustering and dimensionality reduction tech-
niques, such as variants of principal component analysis
[6], [14], [19], [33], [34], [35], [36], [37], [38], matrix fac-
torization [9], [18], [39], [40], [41], tensor approximation
[11], [42], and vector quantization [43], [44].

Although non-parametric methods are data-driven
models that yield accurate and flexible representations,
the amount of compressed data is still cumbersome
when compared to other categories of approximation
algorithms. For BTFs, it is also difficult to achieve real-
time performance for run-time analysis and rendering
in computer vision and graphics applications. Addition-
ally, special interpolation or estimation techniques are
required to synthesize surface appearance from novel
illumination and view directions that are not sampled in
raw data. By contrast, our algorithm provides not only a
higher compression ratio but also a real-time rendering
rate with comparable image quality. Furthermore, novel

view and illumination directions can be easily handled
by our continuous multivariate model and parameter-
ization, and spatial mipmap texture filtering for run-
time rendering is fully supported and inherent in our
hierarchical appearance representation.

2.4 Probabilistic Models
In this category, spatial correlations among appearance
data are described with probability density functions so
that similar appearance data can be synthesized from
estimated parameters of distributions and noise maps
[45], [46]. Recently, Haindl and Filip [8] further proposed
a multi-scale probabilistic BTF model based on the casual
autoregressive random field and combined range maps
to enhance the surface roughness of rendered objects.

Although probabilistic models can achieve a high com-
pression ratio, their main goal is efficient and seamless
BTF synthesis, not an optimal reconstruction of the orig-
inal BTF data. Additionally, the run-time rendering pro-
cess is slow and currently not GPU-friendly. By contrast,
our algorithm can be easily implemented on modern
GPUs and provides a better tradeoff among compression
ratio, image quality, and rendering performance.

3 MULTIVARIATE SRBFS

3.1 Mathematical Formulation
Let ω and ξ denote two points on the unit sphere Sm in
Rm+1. A univariate spherical radial basis function (SRBF)
[13] on Sm is defined as a function G(cosφ) = G(ω · ξ)
that depends on the geodesic distance φ between ω
and ξ. A popular example of univariate SRBFs is the
univariate Gaussian SRBF kernel2:

G(cosφ|λ) = G(ω · ξ|λ) = eλ(ω·ξ)−λ, (1)

where λ ∈ R represents the bandwidth parameter that
controls the concentration of a univariate SRBF, and ξ is
also known as the SRBF center. A univariate spherical
function F (ω) ∈ R thus can be approximated with a
linear combination of J univariate SRBFs as

F (ω) ≈
J∑
j=1

βjG(ω · ξj |λj), (2)

where βj ∈ R denotes the basis coefficient of the j-th
univariate SRBF.

Nevertheless, there are two problems when applying
Eq. (2) to model a reflectance function. First, the appear-
ance of real-world materials is an effect of various phys-
ical factors. Whether these factors are visible or hidden,
the observed reflectance distribution is often a function
of at least two different variables, e.g. illumination and
view directions. However, Eq. (2) is a univariate model

2. It is easy to verify that the normalized univariate Gaussian SRBF
on Sm is equivalent to the von Mises-Fisher distribution. This suggests
that various techniques developed for von Mises-Fisher distributions
can be applied to univariate Gaussian SRBFs with only minor modifi-
cations.
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that only takes a single direction on Sm into account.
This suggests that a multivariate representation may be
more favorable to describe the complex behaviors of a
reflectance function. Second, even though we can apply
Eq. (2) to respectively model the reflection distribution
for each illumination/view direction, the outcome is a
discrete and often non-compact representation. It is non-
trivial to generalize this representation to estimate the
distributions from novel illumination/view directions.

To represent the appearance of a reflectance field
under different physical conditions, we can construct a
multivariate SRBF from the product of several symmetric
univariate SRBFs. For complex or heterogenous materi-
als, multiple multivariate SRBFs can be further linearly
mixed to derive a general weighted sum-of-products
model. More formally, let Ω = {ωn}Nn=1 and Ξ = {ξn}Nn=1

denote two N -element point sets, with ωn and ξn on
the unit sphere Smn in Rmn+1. We define a multivariate
SRBF on the Cartesian product space Sm1× · · · × SmN as

G
(
Ω|Ξ

)
= G

(
ω1, . . . , ωN |ξ1, . . . , ξN

)
=

N∏
n=1

G(ωn ·ξn), (3)

and the multivariate Gaussian SRBF kernel thus corre-
sponds to

G
(
Ω|Ξ,Λ

)
= e

∑N
n=1 (λn(ωn·ξn)−λn), (4)

where Λ = {λn}Nn=1 is the set of bandwidth parameters
of the involved univariate SRBFs, and Ξ is also called
the SRBF center set. Similarly, an N -variate function
F (Ω) ∈ R, with each variable defined on Smn , can be
approximated by a weighted sum-of-products represen-
tation:

F (Ω) ≈
J∑
j=1

βjG
(
Ω|Ξj ,Λj

)
=

J∑
j=1

βj

N∏
n=1

G
(
ωn · ξj,n|λj,n

)
,

(5)
where Ξj = {ξj,n}Nn=1 and Λj = {λj,n}Nn=1 are respec-
tively the center set and the bandwidth set of the j-th
multivariate SRBF.

3.2 Example
Consider a BRDF ρ(ωl, ωv) ∈ R, where ωl and ωv respec-
tively denote the illumination and view directions on S2.
Based on Eq. (5), we can approximate ρ(ωl, ωv) as

ρ(ωl, ωv) ≈
J∑
j=1

βjG
(
ωl · ξj,ωl |λj,ωl

)
G
(
ωv · ξj,ωv |λj,ωv

)
. (6)

Note that Eq. (6) is similar to many factorization-based
representations for BRDFs, e.g., principal component
analysis [14] and non-negative matrix factorization [47],
but our multivariate representation, like other paramet-
ric models, is more compact and it is also more intuitive
to interpret or edit the derived parameters. This relation
to matrix factorization methods also suggests the poten-
tial of applying our multivariate SRBF representation to
approximate reflectance functions. As we will present in

Section 4, Eq. (6) can be further extended into a more
general model than previous methods when combined
with optimized parameterization.

4 OPTIMIZED PARAMETERIZATION

4.1 Mathematical Formulation
Previous articles have reported that fixed parameteri-
zation for a reflectance function, such as the half-way
and difference vectors [15], can significantly influence
the performance of approximation algorithms. However,
since a pre-defined parameterization method often relies
on certain assumptions of material properties, it may
be inadequate to handle various real-world reflectance
data. For example, the half-way parameterization tends
to align the specular peak of a reflectance function,
but the shadowing and masking effects of micro-facets
are ignored. This situation will become even worse for
a real-world BTF, since it is usually measured over a
rough surface with complex meso-structures and light
scattering properties.

To overcome the disadvantages of fixed parameteri-
zation, we propose to learn a set of optimized transfor-
mation functions for a given reflectance data set. Since
our goal is to obtain a compact reflectance representa-
tion, we choose to model the transformation functions
using parametric equations. This particularly allows the
parameterization process to be tightly integrated into
our multivariate SRBF framework. Although the derived
optimal solution is constrained to a certain functional
form, our experimental results show that even a linear
combination of the parameters of a reflectance func-
tion, followed by projection onto the unit sphere, can
be more effective than previous fixed parameterization
approaches. Finding the truly optimal parameterization
using non-parametric models thus is left as our future
work.

More formally, let ψ(Ω|Θ) ∈ Sm be a transformation
function that depends on a given set of parameterization
coefficients Θ = {θi ∈ R}IΘi=1, where IΘ denotes the total
number of parameterization coefficients in Θ and is spec-
ified by users. We would like to find an optimal solution
to Θ so that a multivariate spherical function F (Ω) ∈ R
can be efficiently approximated by transforming it into
another univariate spherical function Fp

(
ψ(Ω|Θ)

)
∈ R

that is more suitable for univariate SRBF expansions (Eq.
(2)):

F (Ω) = Fp
(
ψ(Ω|Θ)

)
≈

J∑
j=1

βjG
(
ψ(Ω|Θ) · ξj |λj

)
. (7)

From Eq. (7), it is also intuitive to extend the same
concept to transform F (Ω) into an Np-variate spherical
function Fp(Ψ) ∈ R as

F (Ω) = Fp(Ψ) = Fp
(
ψ1(Ω|Θ1), . . . , ψNp(Ω|ΘNp)

)
≈ F̂p(Ψ) =

J∑
j=1

βj

Np∏
n=1

G
(
ψn(Ω|Θn) · ξj,n|λj,n

)
, (8)
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Fig. 1. Approximate a BTF using the proposed hierarchi-
cal fitting algorithm.

where Ψ =
{
ψn(Ω|Θn)

}Np
n=1

is a set of Np transformation
functions, Θn = {θi,n}IΘni=1 specifies the parameterization
coefficient set with IΘn elements for the n-th transfor-
mation function, and F̂p(Ψ) denotes the approximate
multivariate SRBF representation of Fp(Ψ). Note that
the number of variables of Fp(Ψ), namely Np, is not
necessarily identical to that of F (Ω), but rather can be
specified by users. This flexibility particularly allows
our representation to accurately model various complex
behaviors of a real-world reflectance function.

In summary, we combine the proposed multivariate
SRBF representation and optimized parameterization to
derive the parameterized multivariate SRBF representa-
tion (Eq. (8)), and solve its parameters by minimizing
the following objective function:

E = Eerr + Eaddl, (9)

where

Eerr =

∫
Sm1

· · ·
∫
SmN

(
F (Ω)− F̂p(Ψ)

)2

dω1 · · · dωN (10)

is the expected squared error between F (Ω) and F̂p(Ψ),
and Eaddl denotes the additional energy terms that
should also be minimized for a robust and satisfying
solution. Fore more details about Eaddl and the practical
algorithm for solving Eq. (9), please refer to Sections 5
and 6.

4.2 Example

We again take the BRDF ρ(ωl, ωv) for an example. Based
on Eq. (8), if we choose a trivariate SRBF representation
(Np = 3), Eq. (6) can be expressed as

ρ(ωl, ωv) ≈
J∑
j=1

βj

3∏
n=1

G
(
ψn(ωl, ωv|Θn) · ξj,n|λj,n

)
, (11)

while each transformation function can be modeled with
the normalization of a linear combination of ωl and ωv

as follows:

ψn(ωl, ωv|Θn) =
θ1,nωl + θ2,nωv
‖θ1,nωl + θ2,nωv‖2

, (12)

where θ1,n and θ2,n are the parameterization coefficients
of the n-th transformation function, and ‖·‖2 denotes the
`2 norm of a vector. Note that when J = 1, Eq. (11) is
similar to the mathematical formulation of homomorphic
factorization [40], but our multivariate representation
allows a linear combination of multiple multivariate
functions to be used to model heterogeneous materials,
which is particularly important for representing BTF
data sets. Moreover, Eq. (12) was inspired by the fact
that many common parameterizations, such as the half-
way, illumination, and view vectors, are its special cases.
It is also noteworthy that these three parameterizations
were employed in the implementation of homomorphic
factorization [40], which further implies the practical
effectiveness of our model.

5 HIERARCHICAL FITTING ALGORITHM

In previous two sections, we have introduced the mul-
tivariate SRBF representation (Section 3) and optimized
parameterization (Section 4) to model a single reflectance
function. To extend our method to model a BTF, we
represent the BTF as a set of texelwise BRDFs and re-
spectively approximate the reflectance data of each texel.
However, this brute-force approach is actually time-
consuming even with our GPU-based implementation
(Section 6.2). Similar to the multi-resolution reflectance
framework in [29], we present a hierarchical fitting al-
gorithm to reduce the computational cost and preserve
spatial coherence, while simultaneously constructing the
mipmap pyramid for high-quality rendering on GPUs at
run-time.

5.1 Overview
Our hierarchical fitting algorithm operates on a given
BTF pyramid {Bi}Ihi=0 and an initial guess of each texel at
the coarsest level. As illustrated in Fig. 1, our algorithm
consists of a sequence of upsampling and optimization
stages from the coarsest level B0 to the finest level
BIh . For a pyramid level i > 0, the upsampling stage
(Section 5.2) derives the initial solution of each texel at
level i from B̃i−1, where B̃i−1 denotes the optimized
results of level i−1. Instead of using traditional image
interpolation techniques, such as bi-cubic or Lanczos
filtering, we propose a joint least-squares upsampling
algorithm by exploiting the relation between Bi and
Bi−1 to assist the resampling of B̃i−1.

After that, the optimization stage (Section 5.3) updates
the initial solution of each texel at level i based on our
parameterized multivariate SRBF representation. To take
advantage of hardware texture filtering during run-time
rendering, we introduce additional spatial smoothness
energy terms in the objective function, which will con-
strain the parameter coherence of adjacent texels. The
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TABLE 1
The hierarchical SRBF fitting algorithm.

Procedure: HierarchyOptimize({Bi}Ihi=0 , B̃0, J,Np)
Input: BTF pyramid {Bi}Ihi=0, number of SRBFs J , number
of variate Np for parameterization, and initial guess B̃0.
Output: Optimized parameters of each level

{
B̃i
}Ih
i=0

.
for each texel t at level 0 do
B̃0(t)← Optimize(B0(t), B̃0(t), J,Np)

end for
for i← 1 to Ih do

Upsample B̃i−1 to obtain B̃i
repeat

for each texel t at level i do
B̃i(t)← Optimize(Bi(t), B̃i(t), J,Np)

end for
until convergence

end for

Function: Optimize(F, F̃ , J,Np)
Input: Reflectance function F , J , Np, and initial guess
F̃ =

{{
βj ,Ξj ,Λj

}J
j=1

, {Θn}Npn=1

}
.

Output:
{
βj ,Ξj ,Λj

}J
j=1

and {Θn}Npn=1.
repeat

Update SRBF coefficient set {βj}Jj=1

Update SRBF center set {Ξj}Jj=1

Update SRBF bandwidth set {Λj}Jj=1

Update parameterization coefficient set {Θn}Npn=1

until convergence
Update all parameters to obtain a locally optimal solution

procedure ”HierarchyOptimize” in Table 1 summarizes
the pseudo-code of the overall fitting process. Note that
finding an appropriate initial guess for the coarsest level
is non-trivial. We postpone the discussion of this issue
to Section 6.1. For implementation details about the
procedure ”Optimize” in Table 1, please refer to Section
6.2.

5.2 Upsampling Stage

Given the optimized parameters of pyramid level i−1,
namely B̃i−1, an appropriate initial solution of each texel
at level i is derived in the upsampling stage. This initial
solution significantly influences the quality and compu-
tational cost for approximating Bi. However, since some
details of Bi may be lost when downsampled to Bi−1

during BTF pyramid construction, traditional image in-
terpolation techniques are inadequate for a high-quality
upsampling from B̃i−1. Our key observation is that
because both Bi and Bi−1 are available in this stage, their
relation can be employed to ’jointly’ derive the initial
guess of B̃i from B̃i−1. This relies on the assumptions
that the relation between B̃i and B̃i−1 is similar to that
between Bi and Bi−1, and B̃i−1 approximates Bi−1 with
low reconstruction errors.

Specifically, a BTF texel t in Bi can be approximated

with a linear combination of a set of texels in Bi−1:

Bi(t) ≈
∑

t′∈Ni−1(t)

wt′Bi−1(t′), (13)

whereNi−1(t) represents the set of participating texels in
Bi−1 for t, and wt′ denotes the blending weight of a texel
t′ ∈ Ni−1(t). In current implementation, we heuristically
determine Ni−1(t) as the neighboring texels of Bi−1(t)
within a user-defined window. Since both Bi and Bi−1

are known in this stage, the unknown blending weights
thus can be derived by solving an unconstrained linear
least-squares problem, and then applied to compute the
initial solution of B̃i as

B̃i(t) =
∑

t′∈Ni−1(t)

wt′B̃i−1(t′). (14)

It should be noted that reconstructing the interpo-
lated parameters of participating texels may not exactly
correspond to interpolating their reconstructed values.
For example, since the center and bandwidth sets are
related to the exponents of multivariate Gaussian SRBFs,
Eq. (14) will linearly blend these two sets of different
texels in the logarithmic space, which is definitely not
equivalent to the weighted summation of the Gaussian
SRBFs of each texel. However, they would be close to
each other if the spatial variations in the parameters
of participating texels are smooth. Since the model pa-
rameters of level i−1 were already updated with spatial
smoothness energy terms in the optimization stage of
previous iteration, we have found that the proposed joint
least-squares upsampling algorithm works very well in
practice.

5.3 Optimization Stage

In this stage, the initial guess of each texel at pyramid
level i is individually updated to obtain a locally optimal
solution that minimizes the objective function in Eq. (9).
Similar to the mixture model of [29], [48], we introduce
an additional smoothness energy term Eaddl in Eq. (9) to
guarantee spatial coherence in the derived parameters.
Previous articles [29], [48] proposed to align only centers
of Gaussian/spherical functions, but we have found that
other model parameters should also be appropriately
aligned in our experiments. There are three main reasons
for this. First, the alignment can be regarded as a reg-
ularization process that avoids overfitting. Second, the
smoothness energy terms particularly allow much faster
convergence for the optimization process. Third, linear
interpolation, instead of nonlinear filtering [29], [48],
on model parameters for efficient run-time performance
(Section 6.3) can be employed if all the model parameters
were appropriately aligned. This would cause some
slight loss of high-frequency features in the fitted and
rendered results, but one may consider it as a tradeoff
between run-time performance and image quality.
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In this paper, Eaddl is thus defined as follows:

Eaddl = µβEβ + µξEξ + µλEλ + µξ,λEξ,λ + µθEθ, (15)

Eβ =
∑

t′∈N ′i (t)

J∑
j=1

(
βj(t)− βj(t′)

)2
, (16)

Eξ =
∑

t′∈N ′i (t)

J∑
j=1

N∑
n=1

(
1− ξj,n(t) · ξj,n(t′)

)
, (17)

Eλ =
∑

t′∈N ′i (t)

J∑
j=1

N∑
n=1

(
λj,n(t)− λj,n(t′)

)2
, (18)

Eξ,λ =
∑

t′∈N ′i (t)

J∑
j=1

N∑
n=1

∥∥∥λj,n(t)ξj,n(t)− λj,n(t′)ξj,n(t′)
∥∥∥2

2
,

(19)

Eθ =
∑

t′∈N ′i (t)

Np∑
n=1

IΘn∑
j=1

(
θj,n(t)− θj,n(t′)

)2
, (20)

where Eβ , Eξ, Eλ, Eξ,λ, and Eθ are respectively the
smoothness energy terms of basis coefficients, centers,
bandwidths, and parameterization coefficients, N ′i (t) de-
notes the set of participating texels at levels i and i−1
for t, and µβ , µξ, µλ, µξ,λ, and µθ are respectively the
user-defined weights for Eβ , Eξ, Eλ, Eξ,λ, and Eθ.

In this way, the smoothness energy terms in Eq. (15)
will guide the model parameters of t to approach those
of N ′i (t). Specifically, Eβ , Eλ, Eξ,λ, and Eθ will penalize
large squared errors between the basis coefficients, band-
widths, and parameterization coefficients of t and N ′i (t),
while Eξ will minimize the cosine of angular differences
between the centers of t and N ′i (t).

Note that Eq. (19) is specially designed for multivariate
Gaussian SRBFs as their centers and bandwidths are
highly coupled with each other. Moreover, the SRBF
parameters in Eq. (15)–(20) should depend on the level
index i and texel t, but we drop them for notational
simplicity. Similar to Ni−1(t) in the upsampling stage,
N ′i (t) is defined as the ’valid’ neighboring texels of t at
levels i and i−1 within a user-defined window, while
a valid texel is referred to as the texel whose model
parameters have ever been optimized. Since a change in
the model parameters of t will influence those of N ′i (t),
the above process is repeated until the parameters of
each spatial location at level i converge or a user-defined
maximum number of passes is reached.

6 IMPLEMENTATION DETAILS

6.1 Initial Guess

Since the approximation quality of the proposed SRBF
representation with optimized parameterization (Eq. (8))
significantly depends on the initial guess of model pa-
rameters, we propose a heuristic technique to determine
an effective initial guess that reduces approximation
errors and computational cost. For the initial guess
of parameterization coefficients, we have found that

previous fixed parameterizations generally provide an
appropriate starting point if they are special cases of the
adopted transformation functions. Take Eq. (12) for an
example, the initial guess of the first three parameter-
ization coefficient sets can be explicitly set to the half-
way, illumination, and view parameterizations, while the
remainders are randomly generated.

Once the initial values of parameterization coefficients
are determined, the initial guess of basis coefficients, cen-
ter sets, and bandwidth sets can be estimated by treating
a multivariate reflectance function as multiple univariate
functions, and iteratively processes one variable of the
reflectance function at a time. Specifically, the key idea
is that if we collect all the reflectance data of a single
variable (say ωn), the resulting data set will be the ob-
servations of a univariate spherical function. Therefore,
we can separately apply the scattered univariate SRBF
representation [13] to approximate the observations of
each univariate function, but additionally constrain that
the representations for different data sets should employ
the same center and bandwidth sets. After carefully
examining the derived parameters, it is obvious that
the basis coefficients form the observations of another
multivariate spherical function without dependence on
ωn. The above process thus can be repeatedly performed
to remove a single variable at each iteration until all
model parameters are obtained.

Note that one can always process the variables of a
multivariate function in an arbitrary order. It is also
feasible to find the optimal order for a small number
of variables by a brute-force approach. However, we
do not consider this issue in current implementation.
Developing an efficient technique for determining the
optimal order is left as a possible research direction in
the future.

6.2 Optimization Process

In our current implementation, we apply the L-BFGS-
B solver [49], [50] to optimize the parameters of the
proposed model. Instead of solving all the model param-
eters at the same time, we employ an iterative alternating
least-squares method (the procedure ”Optimize” in Table
1) that updates only one set of parameters at each step,
while leaving the others unchanged. This scheme often
yields better results, since the four sets of model param-
eters, including coefficient, center, bandwidth, and pa-
rameterization coefficient sets, are highly coupled with
each other.

During each iteration, the gradient computation is
performed on GPUs using NVIDIA CUDA [51]. The
computed results are then transferred from GPUs to the
host memory for the L-BFGS-B solver to update model
parameters on CPUs. Since the gradient computation is
one of the main performance bottlenecks in the opti-
mization process, we have found that this approach can
reduce the computation time by a factor of 2 to 5.
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TABLE 2
Statistics of the proposed model and tensor approximation for multi-resolution BTF approximation. T1 and T2 denote

different settings of tensor approximation for comparison under similar compression ratio and rendering speed.

Material Carpet Hole Impalla Sponge Wool
Illum. directions 120 51 81 120 81
View directions 90 51 81 90 81

Spatial resolution 128×128 128×128 128×128 128×128 128×128
Raw data (GB) 2.64 0.64 1.6 2.64 1.6

Method T1 T2 Fix. Opt. T1 T2 Fix. Opt. T1 T2 Fix. Opt. T1 T2 Fix. Opt. T1 T2 Fix. Opt.
SRBFs: J - - 16 12 - - 24 24 - - 12 12 - - 8 8 - - 12 12

Variates:Np - - 3 4 - - 3 3 - - 3 3 - - 3 3 - - 3 3
Reduced illum. 16 16 - - 24 20 - - 12 12 - - 12 10 - - 12 12 - -
Reduced view 12 4 - - 12 8 - - 12 8 - - 8 4 - - 12 8 - -

Weight: µβ - - 5.0×10–4 7.5×10–5 - - 5.0×10–4 7.5×10–4 - - 2.5×10–5 1.0×10–7 - - 1.0×10–7 1.0×10–7 - - 7.5×10–6 7.5×10–6

Weight: µξ - - 8.0×10–3 2.0×10–3 - - 7.5×10–3 3.0×10–3 - - 6.5×10–3 2.8×10–3 - - 1.0×10–3 7.0×10–4 - - 2.0×10–3 2.0×10–3

Weight: µλ - - 3.8×10–3 1.0×10–3 - - 4.5×10–3 2.5×10–3 - - 2.5×10–3 1.0×10–3 - - 1.0×10–4 4.8×10–5 - - 1.5×10–3 1.5×10–3

Weight: µξ,λ - - 0.0 0.0 - - 2.5×10–5 1.0×10–5 - - 1.0×10–5 0.0 - - 0.0 0.0 - - 0.0 0.0
Weight: µθ - - 5.0×10–4 5.0×10–4 - - 1.0×10–3 3.0×10–3 - - 7.5×10–4 7.5×10–4 - - 5.0×10–7 5.0×10–7 - - 4.0×10–3 4.0×10–3

Comp. data (MB) 8.01 2.68 8.0 7.83 12.01 10.01 12.0 12.25 6.01 4.01 6.0 6.25 4.01 1.67 4.0 4.25 6.01 4.01 6.0 6.25
SE ratio (%) 2.67 4.3 4.01 3.62 4.64 6.56 5.53 4.95 2.8 3.4 3.18 2.73 0.57 0.82 0.86 0.81 1.36 1.84 1.77 1.76

Comp. time (hr.) 0.09 0.07 5.81 13.96 0.12 0.1 7.1 8.83 0.14 0.12 5.13 8.09 0.1 0.1 3.32 5.21 0.05 0.04 7.01 12.15

TABLE 3
Rendering performance of the proposed model and tensor approximation for multi-resolution BTF approximation.

Model Bunny Bunny Cloth Bunny Cloth
Material Carpet Hole Impalla Sponge Wool
Vertices 36k 36k 30k 36k 30k

Coord. texture 2048×2048 2048×2048 1024×1024 2048×2048 1024×1024
Method Raw T1 T2 Fix. Opt. Raw T1 T2 Fix. Opt. Raw T1 T2 Fix. Opt. Raw T1 T2 Fix. Opt. Raw T1 T2 Fix. Opt.

Total data (MB) 2700 31.5 25.17 24.0 23.83 650.3 38.5 34.5 28.0 28.25 1640.3 16.0 13.5 10.0 10.25 2700 25.0 21.92 20.0 20.25 1640.3 16.0 13.5 10.0 10.25
Frames per sec. <0.01 69.86 128.7 125.42 124.15 <0.05 42.5 69.97 76.89 74.36 <0.02 104.21 134.09 137.97 135.21 <0.01 134.63 274.53 294.79 269.63 <0.02 94.82 119.84 122.18 116.42

6.3 Run-Time Rendering
The rendering process of approximated BTFs based on
multivariate SRBFs is quite simple and intuitive. To
utilize mipmap texture filtering on GPUs, we concate-
nate the SRBF parameters at each level into several
two-dimensional texture arrays3, with one (or more if
necessary) texture array for one category of SRBF pa-
rameter sets4. For meso-structure synthesis, we apply
appearance-space texture synthesis [52] on raw data to
obtain the spatial coordinate texture S.

The rendering process thus consists of the following
steps:

1) For current pixel p, sample the synthesized texture
S for the BTF spatial coordinates tp.

2) Sample the texture(s) for all the SRBF parameters
that correspond to tp.

3) The shading color of pixel p is then given by
performing the reconstruction according to the
adopted multivariate SRBF representation.

For a pixel, note that we do not reconstruct the
shading color of each participating texel and then per-
form mipmap filtering, but instead we filter the SRBF
parameters of each participating texel first and recon-
struct the final shading color. When the derived SRBF

3. If texture arrays are not supported in the graphics application
programming interface, we may tile the mipmap of each parameter
texture into one or more ’big’ textures. However, one should be
careful not to include texels out of the tile boundaries in the texture
filtering. This can be achieved by clamping texture coordinates into an
appropriate range before sampling.

4. One may pack the SRBF center and bandwidth sets into one two-
dimensional texture array to slightly reduce texture access time.

parameters of each BTF texel are smooth enough, this
approach usually increases the rendering performance
by a factor of about 6 for trilinear mipmap filtering
without noticeable artifacts. In general, the performance
gain strongly depends on the utilized filtering technique.
The more sophisticated the filtering technique is, the
more performance gain our approach can achieve.

7 RESULTS AND DISCUSSION

7.1 Experimental Results

The experiments of multivariate SRBF representation
and optimized parameterization were conducted on a
workstation with an Intel Core 2 Extreme QX9650 CPU,
an NVIDIA GeForce GTX 280 graphics card, and 8
gigabytes of main memory. The measured BTFs were
provided in courtesy of University of California at San
Diego [19], University of Bonn [36], and Dr. Xin Tong.
The multivariate Gaussian SRBFs (Eq. (4)) were adopted
to represent BTFs. In general, we have found no sig-
nificant difference between various types of SRBFs for
approximating BTFs, but Gaussian SRBFs are locally
compact basis functions and handle most common cases
very well. Additionally, the SRBF center and bandwidth
sets were constrained to be the same for red, green, and
blue channels of a BTF texel since separately fitting the
data of each channel only slightly reduces approximation
errors, but increases computational cost and storage
space by a factor of 2 or more.

Table 2 compares the statistics of the proposed model
and tensor approximation for modeling hierarchical BTF
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raw data tensor (T2) fixed optimized

diff. image diff. image diff. image

(a) Carpet

raw data tensor (T2) fixed optimized

diff. image diff. image diff. image

(b) Hole

raw data tensor (T1) fixed optimized

diff. image diff. image diff. image

(c) Impalla

Fig. 2. Reconstructed BTF images of the proposed model
and tensor approximation. From left to right: raw data;
tensor approximation; fixed parameterization; optimized
parameterization. From top to bottom in each sub-figure:
reconstructed images; absolute difference images scaled
by 2.

data sets, which includes the experimental results of N -
mode singular value decomposition (N -SVD) [11], [42], [53],
traditional fixed (Fix.), and optimized (Opt.) parameter-
ization. In this table, all compressed data were stored as
half-precision (16-bit) floating point numbers [54], and
the quality of compressed data is measured by signal-to-
mean squared error ratio (’SE ratio’). Moreover, T1 and
T2 denote different parameter settings of tensor approx-
imation used for comparison under similar compression
ratio and rendering speed, respectively.

User-defined constants in the proposed model, such
as the number of SRBFs (J), the number of variates

1,1 2,1 3,1

1,2 2,2 3,2

1

1

(a) Hole

1,1 2,1 3,1

1,2 2,2 3,2

1

1

(b) Wool

Fig. 3. Images of optimized parameterization coefficients.

4%

5%

6%

7%

8%

9%

10%

4 8 12 16 20 24

S
q

u
a

re
d

 e
rr

o
r 

ra
ti

o

Number of multivariate SRBFs

Fig. 4. Plot of the squared error ratio versus the number of
SRBFs based on the proposed model for multi-resolution
BTF approximation (Hole).

(Np), and the weights of smoothness energy terms, were
manually tuned in the current implementation. We first
conduct the experiment of a BTF at the coarsest level 0
with J = 8 and Np = 3, and gradually increase J or Np
if the approximation error is large. Note that this only
takes little time to determine J and Np since there are
only few (usually one) BTF texels at level 0. After that,
the weights of smoothness energy terms are resolved and
fine tuned in proportion to the `2 norm of the apparent
BRDF data for a BTF texel. Typically, these weight values
are in the interval from 10−5 to 10−2. The final weight
values of each BTF are also listed in Table 2.

In our experiments, at most three traditional param-
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eterizations: half-way, illumination, and view directions
were employed in the fixed parameterization. As for op-
timized parameterization, we instead utilized the param-
terization function defined in Eq. (12). If the number of
variates was more than 3, namely Np > 3, the optimiza-
tion stage at the coarsest level 0 was performed multiple
times to account for the randomness of the initial guess.
Then, only the SRBF parameters with the lowest approx-
imation errors for BTF texels at level 0 were employed
in the subsequent upsampling and optimization stages
at higher levels.

Note that we skip the reduction of spatial resolution
for the results of tensor approximation, since our multi-
variate SRBF representation can only handle directional
variables. For fast BTF rendering based on tensor ap-
proximation, it is usually better not to reduce the spatial
domain of a BTF. Therefore, we believe that this will not
introduce an unfair comparison among these methods.

Figure 2 demonstrates the reconstructed BTF images
of the proposed model and compare them with those of
tensor approximation based on N -SVD. From this figure
and Table 2, the proposed optimized parameterization
generally outperforms the traditional fixed approach
in terms of approximation errors and visual quality,
especially when the BTF data sets exhibit complex meso-
structures, specular reflectance, or sharp shadows. As
shown in Figure 2(b), multivariate SRBFs tend to capture
more sharp features in a BTF, such as specular highlights,
which tensor approximation fails to preserve under sim-
ilar rendering rate. In Section 7.2, we will further discuss
the advantages and disadvantages of multivariate SRBF
representation and tensor approximation in details.

Figure 3 demonstrates the images of optimized pa-
rameterization coefficients. In the experiments, we have
found that parameterization coefficients tend to align
with illumination and geometric features of a BTF, es-
pecially shadows, specular highlights, and uneven sur-
faces. For example, one can roughly perceive the distri-
bution of surface normals of Hole and Wool from Figure
3. For diffuse-like BTFs such as Wool, surface geometry
often dominates the spatial variation of parameterization
coefficients, and the solution of parameterization coeffi-
cients is generally not far away from our initial guess
(half-way, illumination and view directions) when the
object surface is rather flat. As for BTFs with specu-
lar effects like Hole, illumination features are also very
important to the spatial variation of parameterization
coefficients. In highlight- and shadow-covered regions,
parameterization coefficients generally changes more
quickly. These interesting findings particularly open a
connection between the results of our approach and sur-
face normal estimation of a BTF, or even material/face
recognition.

Figure 4 further plots the squared error ratio of the BTF
Hole versus the number of SRBFs based on the proposed
model. This figure particularly shows the scalability of
the proposed multivariate SRBF representation. The ap-
proximation error of a BTF can be gradually reduced by

increasing the number of SRBFs. Although we currently
do not have a theoretical proof on how to decide the
number of SRBFs, our framework allows one to incre-
mentally increase the number of SRBFs by updating pre-
vious optimized results. From our experiments, we have
found that the more lighting and geometric saliences
exhibit in the BTF (for example, more rapidly spatially-
or angularly-varying shadows and specular highlights,
or rougher object surfaces), the larger number of SRBFs
is needed to achieve a low approximation error, even for
approximations without smoothness energy terms.

Table 3 and Figure 5 respectively present the run-
time performance and rendered images of the proposed
model and tensor approximation for various BTF data
sets. In our experiments, the screen resolution and the
number of directional light sources were respectively set
to 640×480 and 2. In Table 3, we list the resolution of the
synthesized coordinate texture of each BTF in the row
’Coord. texture’. Note that the statistics in the row ’Total
data’ also include the amount of synthesized texture
data. Figure 5 demonstrates that our approach achieves
much faster rendering speed while maintaining compa-
rable image quality compared to tensor approximation
under similar compression ratio. For comparison under
similar rendering speed, one can find that the optimized
parameterization has smaller approximation error and
compressed data size than the tensor approximation
(T2 in Tables 2 and 3). In particular, when a BTF data
set exhibits specular reflectance and sharp shadows,
the optimized paramterization outperforms the fixed
parameterization and tensor approximation (Figure 6). In
general, all experimental results show that the proposed
model can achieve a better tradeoff between rendering
performance and image quality than tensor approxima-
tion, especially when rendering time is a critical issue at
run-time.

Due to the access overhead of additional parameters,
the rendering performance of optimized parameteriza-
tion is slightly slower than that of fixed parameteriza-
tion, but there are no significant differences between
them. For a medium-size model, both methods can easily
achieve real-time rendering rates at run-time. More-
over, the run-time performance of multivariate SRBF
representation is typically faster than that of tensor
approximation. This is owing to that tensor approxima-
tion needs extra computational overhead and auxiliary
texture data for efficient interpolation at run-time. By
contrast, the proposed multivariate SRBF representation
is a continuous parametric model, hence no additional
interpolation techniques for smooth transitions across
different illumination (or view) directions are required.

In Figure 7, we also compare the effects of smoothness
energy terms (Section 5.3) and hardware mipmap filter-
ing acceleration. Figures 7(c) and 7(d) were respectively
generated using the approximated results of the pro-
posed model without/with smoothness energy terms.
In general, including the smoothness energy terms in
Eq. (15) will significantly reduce the computational cost
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(a) Bunny with Carpet (b) Bunny with Hole (c) Bunny with Sponge (d) Cloth with Wool

Fig. 5. Comparison of rendered images under similar compression ratio. From top to bottom: raw data; tensor
approximation (T1); fixed parameterization; optimized parameterization. This figure illustrates that our approach
can achieve similar rendering quality with much faster rendering speed under similar compression ratio. For the
configurations of parameterizations and run-time rendering, please refer to Tables 2 and 3.

of the hierarchical fitting process while only slightly
increasing the approximation error of a BTF.

Note that for Figures 7(c) and 7(d), we disabled
the built-in trilinear mipmap filtering of GPUs, recon-
structed the shading color of each participating texel,
and then performed mipmap filtering in shaders. By
contrast, Figure 7(e) was rendered by enabling hardware
trilinear mipmap filtering to interpolate SRBF parame-
ters first and then reconstructing the final shading color.
This will greatly increase rendering performance without
noticeable defects on image quality when the derived
SRBF parameters of a BTF are smooth enough.

7.2 Discussion and Limitations
There are some previous articles that employed basis
functions similar to SRBFs to approximate a reflectance

function or BTF [12], [28], [29]. The most significant dif-
ference between our approach and previous approaches
is that we propose multivariate SRBFs to achieve an
accurate and efficient representation, while the basis
functions adopted in previous work are univariate. This
particularly allows us to multi-laterally combine various
directional factors to describe a reflectance function,
which was ignored in previous approaches. Moreover,
Green et al. [28] proposed to parameterize a BRDF so
that it can be efficiently represented using a mixture
of isotropic Gaussians for light transport problems, but
their fixed parameterizations may not be adequate to
represent complex real-world reflectance functions. By
contrast, our approach utilizes optimized parameteriza-
tion that is data-dependent. Tan et al. [29] and Wang
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(a) Optimized (b) Raw (c) Tensor (T2) (d) Fixed (e) Optimized

Fig. 6. Comparison of rendered images under similar rendering speed. (a) the whole rendered image of optimized
parameterization. (b)-(e) are the enlarged images generated by different models. One can observe that the optimized
parameterization result better preserves specular effects and sharp shadows. For the configurations of approximation
methods and run-time rendering, please refer to Tables 2 and 3.

(a) (b) (c) 0.59%, 502.71 hr., (d) 0.81%, 5.21 hr., (e) 0.81%, 5.21 hr.,
54.27 FPS 54.43 FPS 311.9 FPS

Fig. 7. Effects of smoothness energy and hardware texture filtering. (a) Whole rendered result using raw data; (b) raw
data; (c) without smoothness; (d) with smoothness; (e) with smoothness and hardware texture filtering. The squared
error ratio, compression time, and rendering performance of the approximated BTF are shown under each figure.

TABLE 4
Feature comparisons between multivariate SRBFs and

tensor approximation for BTF modeling.

Method Multivariate SRBFs Tensor approximation
Assumption Parametric Non-parametric

Compression error Moderate Low
Compression ratio Moderate∗ High
Compression time Time-consuming Moderate

Formulation Continuous Discrete
Visual quality High High

Auxiliary data for rendering No Yes
Rendering performance Fast Moderate

∗. Recall that multivariate SRBFs can only handle directional vari-
ables, but tensor approximation can reduce the dimensionality of all
kinds of variables at the same time. We currently do not apply any
other approximation methods to compress the spatial domain of SRBF
parameters for a BTF.

et al. [12] also applied a mixture of isotropic/spherical
Gaussians to represent the distribution of normals in the
traditional micro-facet model. Specifically, their methods
[12], [29] rely on physical assumptions, such as Fres-
nel and shadowing terms, to derive the simple normal
distribution function for reflectance data fitting, which
additionally needs to estimate surface normals for the
BTF of a rough surface. By contrast, we do not assume

any physical properties of the available BTF data, and
implicitly incorporate the traditional physical terms into
our model. In this way, a single multivariate SRBF can be
regarded as data-dependently including/approximating
many traditional physical properties in terms of different
variates.

Table 4 compares the features of multivariate SRBFs
and tensor approximation for BTFs. Comparisons of
these two compression methods are similar to the tradi-
tional debates between parametric and non-parametric
models in the statistics and machine learning communi-
ties. In general, multivariate SRBFs (parametric models)
lead to more efficient rendering performance at run-
time, while tensor approximation (non-parametric mod-
els) provides a more accurate representation for visual
data sets.

An additional advantage of multivariate SRBFs is
that approximating a hierarchical set of multi-resolution
BTFs can be achieved using the proposed hierarchical
fitting algorithm, while sophisticated run-time mipmap
texture filtering can also be readily performed on GPUs
by including smoothness energy terms in the objec-
tive function. Nevertheless, approximating a BTF with
multivariate SRBFs is computationally expensive (typi-
cally several hours) due to the non-linear optimization
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process, even if our implementation already achieves
considerable acceleration with GPUs. On the contrary,
tensor approximation usually takes only tens of minutes
to decompose a given BTF data set since only linear
algebra operations are needed. Thus, there is always a
trade-off between off-line and run-time costs for these
two categories of compression methods.

For the proposed optimized parameterization, it is
possible to adopt other parameterization functions other
than Eq. (12). Any other parameterization functions can
be easily integrated into the proposed model, as long as
they will not lead to difficult gradient computation in the
optimization process. For instance, one may formulate
the parameterization functions as symmetric 3×3 matrix
transformations [23] or linear transformations in the
spherical coordinate system [17]. It may also be effective
to first apply linear or non-linear projections to obtain
some special parameterizations [15], [16], [18], [21], [22],
and then linearly combine them to construct final param-
eterization functions. These can be considered as gener-
alizations of previous traditional parameterizations. In
the current implementation, we choose Eq. (12) sim-
ply because it includes popular fixed parameterizations
(half-way, illumination, and view directions) as its subset
and results in efficient parameter estimation.

There are also some disadvantages and limitations of
the proposed model:
• As with many alternating optimization algorithms,

the stability of estimated SRBF parameters is influ-
enced by the initial guess and the alternating order.

• User-defined constants in the proposed model need
to be manually tuned for different BTFs.

• The smoothness energy terms (Section 5.3) and
linear interpolation on model parameters at run-
time (Section 6.3) inevitably decrease approximation
quality and result in some artifacts. It is expected
that high-frequency features in BTFs will be slightly
smoothed or even lost after approximation.

In current implementation, we propose a heuristic ap-
proach to determine a reasonable initial guess and ig-
nore the effects of the alternating order. We have also
found that bounding the values of SRBF parameters can
increase the stability of estimated parameters. In our
experience, it is recommended to bound coefficients in
the interval [−bmax,+bmax], where bmax is the maximum
absolute value of input BTF data, bandwidths in the
interval [−32,+32], and parameterization coefficients in
the interval [−1,+1].

Moreover, when multivariate Gaussian SRBFs are
adopted and rendering performance is not a major
concern, one may instead align only SRBF centers and
parameterization coefficients (Eq. (17) and Eq. (20)) to
preserve more high-frequency features in BTFs. Nev-
ertheless, the nonlinear filtering technique [48] should
be applied to interpolate SRBF centers and bandwidths
at run-time, while linear interpolation is employed for
other model parameters. Note that this can improve
image quality, but rather reduce run-time performance.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel data represen-
tation for BTFs. Based on multivariate SRBFs, reflectance
functions can be modeled in their intrinsic spherical do-
main to avoid artifacts that result from false boundaries,
distortions, and unnecessary parameterization. Most ex-
isting methods were not originally developed to handle
spherical functions and deficient in this important fea-
ture. Therefore, they have to model a spherical function
in an inappropriate domain rather than the unit hyper-
sphere. Moreover, while a sum-of-products model with
multivariate SRBFs provides an intrinsic and efficient de-
scription of multivariate spherical functions, optimized
parameterization overcomes the major disadvantage of
traditional fixed parameterizations by learning data-
dependent transformation functions. Experimental re-
sults reveal that multivariate SRBFs and optimized pa-
rameterization can be seamlessly integrated to obtain a
practical solution of photorealistic BTF rendering at real-
time rates. Finally, our approach for computing the opti-
mal parameterization and SRBF coefficients of BTF data
can be potentially applied to several computer vision
problems, such as surface normal estimation, material
classification, and object recognition when the appear-
ances of materials or objects under various illumination
or view directions are available.

In the current model, the proposed multivariate SRBF
representation only employs one type of SRBFs. An
obvious question is whether we can utilize more than
one type of SRBFs to approximate observations on the
unit hyper-sphere or not. The answer is certainly ’yes’.
We may achieve this simply by weightedly summing
different types of multivariate SRBFs. For a multivariate
SRBF, it can even be constructed from the product of
different types of univariate SRBFs. Nevertheless, the
real question is whether this sophisticated approach will
outperform the current SRBF representation or not? This
may need more experiments to reach a final conclusion.

The proposed framework of optimized parameteriza-
tion relies on a pre-defined parametric model. Hence,
its optimality is built upon a specific functional form.
Finding the truly optimal parameterizations for a given
visual data set is still a challenging problem. We plan
to investigate this issue using non-parametric models in
the future. Moreover, the proposed optimized parame-
terization framework only supports directional variables,
but real-world visual data sets may also depend on
other types of physical factors. These non-directional
factors should not be excluded from parameterization.
For example, we may additionally take the spatial vari-
ables of a BTF into account for parameterization. In this
way, spatially-varying characteristics of the BTF can be
implicitly modeled in a unified framework.
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