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Abstract

This paper introduces a new data representation and compres-
sion technique for precomputed radiance transfer (PRT). The light
transfer functions and light sources are modeled with spherical ra-
dial basis functions (SRBFs). A SRBF is a rotation-invariant func-
tion that depends on the geodesic distance between two points on
the unit sphere. Rotating functions in SRBF representation is as
straightforward as rotating the centers of SRBFs. Moreover, high-
frequency signals are handled by adjusting the bandwidth param-
eters of SRBFs. To exploit inter-vertex coherence, the light trans-
fer functions are further classified iteratively into disjoint clusters,
and tensor approximation is applied within each cluster. Compared
with previous methods, the proposed approach enables real-time
rendering with comparable quality under high-frequency lighting
environments. The data storage is also more compact than previous
all-frequency PRT algorithms.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
G.1.2 [Numerical Analysis]: Approximation—Special function ap-
proximations; E.4 [Coding and Information Theory]: Data com-
paction and compression
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1 Introduction

Real-time rendering of global light transport remains a major chal-
lenge in computer graphics. The difficulty lies in interactively syn-
thesizing realistic images with limited computing power. The pre-
computed radiance transfer (PRT) algorithm [Sloan et al. 2002]
has recently attracted much attention owing to its ability to allow
real-time rendering of complex objects under dynamic lighting en-
vironments. However, previous PRT methods either only handle
low-frequency lighting environments, or suffer from the unwieldy
size of PRT data sets even after compression. For dynamic scenes,
the amount of PRT data sets further expands to an impractical de-
gree for real-time applications. The enormous PRT data sets often
prohibit high-quality rendering, subsequently restricting practical
applications of the PRT algorithm.

This paper presents a novel method to model and compress raw
PRT data sets. The proposed approach is based on approximating
light transfer functions with a set of spherical radial basis functions
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Figure 1: Comparison of the rendered results between the all-
frequency CPCA algorithm [Liu et al. 2004] and our approach. The
lighting environment adopted in the result of all-frequency CPCA
was approximated with 972 coefficients using the area-weighted
wavelet method [Ng et al. 2003], whereas our approach modeled
the environment with 162 scattered SRBFs (972 parameters). Note
that our approach achieves real-time performance with image qual-
ity comparable to all-frequency CPCA.

(SRBFs) in advance. To investigate inter-vertex data coherence,
the approximated results of diffuse and glossy objects are further
compressed using clustered principal component analysis (CPCA)
[Sloan et al. 2003] and clustered tensor approximation (CTA), re-
spectively. For glossy objects, the proposed CTA algorithm classi-
fies the light transfer functions into groups to reduce inter-cluster
variance. Since the PRT data sets within each cluster are intrin-
sically a multi-dimensional array, we retain their original struc-
ture, and analyze the coherence along each dimension with tensor
approximation. Additionally, a technique for iteratively updating
cluster members is introduced to minimize least-squares errors.

We adopt SRBFs to represent radiance functions for three rea-
sons. First, the spatial localization property of SRBFs allows high-
frequency signals to be handled efficiently. Second, SRBFs are cir-
cularly axis-symmetric and rotation-invariant functions defined on
the unit sphere. Radiance functions can be modeled in their intrin-
sic domain, rather than a cubic or planar domain, to avoid the false
boundaries and distortions that result from re-parameterizations in
non-intrinsic domains. Furthermore, it is also simple to rotate and
convolute functions represented in SRBFs. Third, similar to radial
basis functions (RBFs), SRBFs are naturally applicable to interpo-
late and extrapolate scattered data. They can be non-uniformly dis-
tributed based on sampled data to obtain a compact representation
for the original function.

In brief, this paper makes the following contributions:



• A novel representation for PRT data and radiance functions
based on SRBFs is introduced, which allows a compact data
representation and real-time rendering of complex objects un-
der high-frequency lighting environments.

• A new technique for analyzing multi-dimensional data is
proposed, which iteratively re-classifies cluster members to
search for a locally optimal solution.

• A new approach for modeling area light sources, such as
high dynamic range (HDR) environment maps, with scat-
tered SRBFs is also presented, which may be promising for
other problems, including the importance sampling of spheri-
cal functions.

2 Related Work

2.1 Precomputed Radiance Transfer

The PRT algorithm can capture self-shadowing and self-inter-
reflection effects from dynamic lighting environments. As a pre-
process, PRT precomputes a solution to the light transport of a
scene, and records the simulation results. To decrease data stor-
age and computational costs, the recorded data are compressed for
efficient rendering at run-time. The low-frequency PRT methods
[Lehtinen and Kautz 2003; Sloan et al. 2002; Sloan et al. 2003]
projected the per-vertex light transfer functions onto the spherical
harmonics (SH) basis. The coherence among vertices was then ex-
ploited using principal component analysis (PCA) [Lehtinen and
Kautz 2003] or CPCA [Sloan et al. 2003]. By contrast, the all-
frequency PRT methods [Liu et al. 2004; Ng et al. 2003; Ng et al.
2004; Wang et al. 2004] approximated the densely-sampled PRT
data with sophisticated compression techniques, such as non-linear
wavelet approximation [Ng et al. 2003; Ng et al. 2004; Wang
et al. 2004] and BRDF factorization [Liu et al. 2004; Wang et al.
2004]. However, previous compression schemes are inadequate
for harnessing the power of PRT. Based on the SH basis, the low-
frequency PRT algorithms may take tens of thousands of terms to
represent regional lighting and shadowing effects. As for the all-
frequency PRT algorithms, the compressed data are still cumber-
some for real-time rendering of objects with glossy BRDFs.

Green et al. [2006] also proposed a hybrid PRT method for static
scenes. While view-independent effects, including direct and in-
direct diffuse terms, were modeled with the SH or wavelet basis,
high-frequency view-dependent signals, such as direct and indi-
rect glossy terms, were approximated with Gaussian functions us-
ing non-linear optimization. However, this method is currently re-
stricted to model specular effects with Gaussian functions, and it is
unclear whether other all-frequency effects, such as all-frequency
shadows, could be handled. By contrast, our approach allows ren-
dering objects with all-frequency shadows in an unified framework.

Apart from static scenes and distant illumination, PRT has been ex-
tended to deformable objects [James and Fatahalian 2003; Sloan
et al. 2005], dynamic scenes [Kautz et al. 2004; Zhou et al. 2005],
and local lights [Kristensen et al. 2005; Zhou et al. 2005]. Sloan et
al. [2005] adopted rotation-invariant harmonic functions, i.e. zonal
harmonics (ZH), to model light transfer functions using non-linear
optimization. Thus, rotating the transfer functions is simple and
trivial. Although the ZH basis may yield a more compact represen-
tation than the SH basis, it is still restricted to low-frequency signals
and lighting environments. Moreover, Kristensen et al. [2005] in-
troduced the unstructured light clouds by precomputing light trans-
fer functions with respect to densely-sampled local lights and then
clustering the results based on heuristic metrics. Zhou et al. [2005]
also presented a shadow approach, i.e. precomputed shadow fields,

for dynamic scenes and local lights. The shadow field was built
from concentric shells surrounding a light source or an object. At
run-time, the shadow fields of each scene entity were combined to
obtain incident radiance distributions for rendering.

2.2 Spherical Radial Basis Functions

Spherical radial basis functions (called spherical basis functions in
[Narcowich and Ward 1996]) are special RBFs defined on the unit
sphere. Their intrinsic nature in the spherical domain and other ap-
pealing properties, such as rotational invariance and positive defi-
niteness, make them appropriate for modeling and analyzing spher-
ical data without introducing any artificial boundaries or distor-
tions. When combined with multi-resolution approaches, such as
spherical wavelets (SW) [Freeden et al. 1998; Narcowich and Ward
1996], SRBFs become a powerful tool for analyzing scattered data
on a sphere, including information measured by satellites and ob-
served stations on the entire globe.

Computer graphics researchers are not unfamiliar with SRBFs. The
generalized cosine lobe [Lafortune et al. 1997] and the isotropic
Gaussian kernel of Ward model [Ward 1992] are two special cases
of SRBFs. In both papers, they were applied to model BRDFs, of-
ten leading to a compact, expressive, and physically plausible rep-
resentation of reflectance functions. Green et al. [2006] also ap-
plied Gaussian functions, which can be viewed as a special case of
SRBFs, to model all-frequency glossy and mirroring effects with
self-occlusions. In this paper, we adopt uniform SRBFs to model
PRT data sets, and employ non-linear optimization to approximate
lighting environments with scattered SRBFs.

2.3 Tensor Approximation

Dimensionality reduction techniques have been widely adopted to
analyze and compress data in computer graphics. Perhaps the most
popular approach is the traditional PCA [James and Fatahalian
2003; Lehtinen and Kautz 2003; Sloan et al. 2003], which is a
linear model and often computed using singular value decompo-
sition (SVD). In PCA, data samples are transformed from a high-
dimensional space into another low-dimensional sub-space spanned
by only a few principal components (PCs). Thus, the original sam-
ples can be approximated by projecting them onto these PCs. A
major drawback of the traditional PCA is that data must be re-
arranged into a standard two-mode matrix before analysis. How-
ever, in real cases, observations are frequently sampled under var-
ious conditions, and can be naturally classified into more than two
modes. The original structure and important information of data
may be lost after the re-arrangement.

In recent years, the multi-linear analysis [De Lathauwer et al. 2000]
has been successfully applied to data-driven models [Vasilescu and
Terzopoulos 2004; Wang et al. 2005] as well as the face transfer
[Vlasic et al. 2005]. It can be viewed as a generalization of the
traditional PCA, and permits separate dimensionality reduction. In
[Vasilescu and Terzopoulos 2004], a set of bidirectional-texture-
function (BTF) images was organized as a tensor. The basis matri-
ces associated with each mode were then extracted using the tradi-
tional PCA by retaining the structure of that mode and unfolding
others into a single vector. Wang et al. [2005] also proposed an out-
of-core and block-wise technique based on the optimal N -mode
SVD algorithm [De Lathauwer et al. 2000].

Although tensor approximation methods allow a higher compres-
sion ratio than the traditional PCA, directly adopting these methods
to PRT data sets would be inadequate for our goal. Even after ap-
plying the optimal tensor decomposition, the reduced ranks of each
mode are still high (30 views, 30 illuminations, and a 96× 96 spa-
tial resolution in [Wang et al. 2005]) for efficient reconstruction on
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Figure 2: (a) 2D plot of Gaussian SRBFs with different bandwidth
parameters. (b) 3D plot of a Gaussian SRBF.

GPUs. To solve this problem, we group the PRT data sets into dis-
joint regions, within which the member data form a sub-tensor with
lower variance, and then decompose the results to obtain fewer re-
duced ranks using the optimal N -mode SVD algorithm.

3 Overview

In the off-line process (Section 5), a solution to global illumination,
i.e. light transfer functions, is precomputed, approximated with a
set of uniformly distributed SRBFs (Section 5.1), and further com-
pressed using either CPCA for diffuse objects or the proposed CTA
algorithm for glossy objects (Section 5.2). The source radiance is
also modeled with scattered SRBFs for efficient rendering at run-
time (Section 5.3). For glossy objects, since approximating the raw
PRT data with SRBFs and then compressing the results using CTA
are computationally expensive, we factor BRDFs using SVD to re-
duce the cost.

In the run-time process (Section 6), the source radiance is rotated to
align with objects and convoluted with the light basis matrix of each
cluster. Finally, the shading color of each vertex is reconstructed
from the vertex basis matrices, the projected weights, and the pre-
filtered view-dependent textures.

4 SRBF Representation for PRT

4.1 Background of SRBFs

SRBFs are circularly axis-symmetric functions defined on Sm,
which is the unit sphere in Rm+1. Let η and ξ denote two points
on Sm, and θ be the geodesic distance between η and ξ, i.e.
arccos(η · ξ) . A SRBF is defined as a function that depends on
θ, and can be expressed in terms of expansions in Legendre poly-
nomials as

G(cos θ) = G(η · ξ) =

∞∑
l=0

GlPl(η · ξ) , (1)

where Pl(η · ξ) is the normalized Legendre polynomial of degree l,
i.e. Pl(1) = 1, and the Legendre coefficients Gl satisfy Gl > 0 as
well as

∑∞
l=0 Gl <∞ . ξ is also known as the center of a SRBF.

Based on the orthogonal property of Legendre polynomials in the
interval [−1,+1], the Legendre expansions facilitate the convolu-
tion of two SRBFs, i.e. the spherical singular integral, by

(G ∗m H)(ξg · ξh) =

∫
Sm
G(η · ξg)H(η · ξh) dω(η)

=

∞∑
l=0

GlHl
ωm
dm,l

Pl(ξg · ξh) ,

(2)

where ωm is the total surface area of Sm, dm,l denotes the dimen-
sion of the space of order-l spherical harmonics on Sm, and dω is
the differential surface element on Sm. For more details about Eq.
2, please refer to [Narcowich and Ward 1996]1 and [Freeden and
Windheuser 1997].

Two examples of SRBFs are the Abel-Poisson SRBF kernel (Eq. 3)
and the Gaussian SRBF kernel (Eq. 4):

GAbel(η · ξ;λ) =
1− λ2[

1− 2λ(η · ξ) + λ2
]3/2 , 0 < λ < 1 , (3)

GGau(η · ξ;λ) = e−λeλ(η·ξ) , 0 < λ , (4)

where λ denotes the bandwidth parameter, and controls the cover-
age of a SRBF. By choosing an appropriate value for λ, a SRBF
can be adaptive to the spatial variation of local region. Therefore,
SRBFs not only overcome one of the major disadvantages of the SH
basis, but also possess more degrees of freedom than the ZH basis.
Furthermore, while the convolution of two Abel-Poisson SRBFs re-
mains another Abel-Poisson SRBF, the spherical singular integral
of two Gaussian SRBFs can be efficiently evaluated for small m .
Their spherical singular integrals are(

GAbel ∗m HAbel)(ξg · ξh;λg, λh)

=
1− (λgλh)2[

1− 2(λgλh)(ξg · ξh) + (λgλh)2
]3/2 , (5)

(
GGau ∗m HGau)(ξg · ξh;λg, λh)

= e−(λg+λh)ωm Γ
(m+ 1

2

)
Im−1

2

(
‖r‖
)( 2

‖r‖

)m−1
2

, (6)

where r = λgξg + λhξh . For the mathematical proof and details
about Eq. 6, please refer to Appendix A.

Similar to RBFs in Rm+1, given a set of distinct points
Ξ = {ξ1, . . . , ξn} on Sm, which is called the set of SRBF centers,
and another set of real numbers Λ = {λ1, . . . , λn} in R, which is
named the set of SRBF bandwidth parameters, a spherical function
F (η) can be represented in SRBF expansions as

F (η) ≈
n∑
k=1

FkG(η · ξk;λk) . (7)

SRBFs thus behave as reproducing kernels for interpolating F (η)
on Sm, and the SRBF coefficients Fk can be obtained by ordinary
least-squares (OLS) or regularized least-squares (RLS) projection
[Ramsay and Silverman 2005].

4.2 PRT Representation in SRBFs

For distant illumination, the rendering equation [Kajiya 1986] is

Bx(ηo) =

∫
S2
L(ηi)ρx(ηi, ηo)Vx(ηi)(ηi · nx) dω(ηi) , (8)

where Bx(ηo) denotes the outgoing radiance from a point x in di-
rection ηo , and L(ηi) is the incident radiance in direction ηi . ρx,
Vx(ηi), and nx denote the BRDF, the visibility function, and the
surface normal at x , respectively.

1There is a minor error with ωm in [Narcowich and Ward 1996]. The
correct equation should be ωm = 2π(m+1)/2

Γ
(

m+1
2

) .



After approximating the BRDF with several view-dependent func-
tions φx,k(ηo) and light-dependent functions ψx,k(ηi) by using the
SVD algorithm [Liu et al. 2004; Wang et al. 2004], Eq. 8 becomes

Bx(ηo) ≈
K∑
k=1

[
φx,k(ηo)

∫
S2
Tx,k(ηi)L(ηi) dω(ηi)

]
,

Tx,k(ηi) = ψx,k(ηi)Vx(ηi)(ηi · nx) ,

ρx(ηi, ηo) ≈
K∑
k=1

φx,k(ηo)ψx,k(ηi) = ΦxΨx ,

(9)

where Tx,k(ηi) is known as the light transfer function, and de-
scribes the transport of light, for the k-th light-dependent function
ψx,k(ηi), between the distant illumination source and the incident
radiance to x in direction ηi.

Let Ξ1 = {ξ1,1, . . . , ξ1,nt} and Ξ2 = {ξ2,1, . . . , ξ2,nl} be two
sets of distinct points on S2, where ξ1,1 6= . . . 6= ξ1,nt and
ξ2,1 6= . . . 6= ξ2,nl are satisfied, and Λ1 = {λ1,1, . . . , λ1,nt} and
Λ2 = {λ2,1, . . . , λ2,nl} denote two sets of real numbers in R . Our
approach represents the light transfer function Tx,k(ηi) and the dis-
tant illumination L(ηi) in SRBF expansions as

Tx,k(ηi) ≈
nt∑
l=1

Tx,k,lG(ηi · ξ1,l;λ1,l) .

L(ηi) ≈
nl∑
j=1

LjG(ηi · ξ2,j ;λ2,j) ,

(10)

By combining Eq. 9 with Eq. 10, the outgoing radiance at x is ap-
proximated by

Bx(ηo) ≈
K∑
k=1

[
φx,k(ηo)

nl∑
j=1

nt∑
l=1

Tx,k,l Lj∫
S2
G(ηi · ξ1,l;λ1,l)G(ηi · ξ2,j ;λ2,j) dω(ηi)

]
. (11)

Eq. 11 can be simply re-written in matrix notation as

Bx ≈ Φx Tx Ax L , (12)

where Ax is known as the interpolation matrix between the light
transfer matrix Tx and the incident illumination vector L . The
component of Ax in the m-th row and the n-th column is given by(

Ax

)
mn

=

∫
S2
G(ηi·ξ1,m;λ1,m)G(ηi·ξ2,n;λ2,n) dω(ηi) . (13)

Since SRBFs are non-orthonormal basis functions, Ax is necessary
to account for the spherical singular integrals.

5 Off-Line Process

5.1 PRT Precomputation

For an input scene, our system precomputes the light transfer ma-
trix Tx at each vertex. The visibility function at x , Vx(ηi), is ob-
tained by rendering the scene into a cube map with flat shading.
To avoid aliasing artifacts, the cube map is super-sampled with a
6× 128× 128 resolution, and then down-sampled to 6× 32× 32
pixels. Currently, our system only takes direct illumination into ac-
count. However, inter-reflections can be handled by applying GPUs
to render triangle ID maps. We intend to integrate full global illu-
mination solutions in the future.

The BRDF at x , given by ρx, is assumed to be the same everywhere
on an object without losing generality, and approximated using the
SVD algorithm by retaining K terms of φx and ψx with the first
K largest singular values. This scheme will provide a preliminary
data reduction for the raw PRT data sets while preserving most of
the important information for further analysis in the following CTA
stage. In our current configuration,K simply equals to 1 for diffuse
objects, whereas K is set to 16 for glossy objects. The value of K
depends on the complexity of a BRDF, and a setting of K 6 16
is typically sufficient for analytic BRDFs [Liu et al. 2004; Wang
et al. 2004]. For complex BRDFs, we can set K to a value such
that the sum of the first K largest singular values exceeds a certain
percentage, for example 90%, of the sum of all singular values.

The set of SRBF centers Ξ1 on S2 is generated by repeatedly subdi-
viding an icosahedron, while the set of SRBF bandwidth parameters
Λ1 is assigned with the same value determined from the minimum
geodesic distance between two centers, which is related to the vari-
ance with respect to the center of a SRBF [Freeden and Windheuser
1997; Narcowich and Ward 1996]. Our system currently subdivides
an icosahedron into a mesh with 642 vertices as the SRBF centers,
and sets the variance to π/40 radians for deriving the SRBF band-
width parameters. For more details about the relationship between
the variance and the bandwidth parameters for Abel-Poisson and
Gaussian SRBFs, please refer to [Freeden and Windheuser 1997;
Narcowich and Ward 1996]. Although this configuration is suffi-
cient for general cases according to our experiments, a finer mesh
on S2 as well as a smaller value of variance (a larger value of band-
width parameter) can always be adopted to handle more compli-
cated Tx,k(ηi) . Finally, each Tx,k(ηi) is projected onto the SRBFs,
and the resulting coefficients are quantized to 16-bits of precision.

The light transfer functions are not modeled with scattered SRBFs
for two reasons. First, the optimization process (Section 5.3) is
computationally too expensive to be performed at each vertex. Sec-
ond, after encoding the PRT data sets using CPCA or CTA, since
the SRBF centers of each vertex are usually different, we can not
take advantage of the per-cluster operations (Section 6) at run-time,
and must perform the convolutions vertex by vertex. We aim to
investigate these issues in the future.

5.2 Clustered Tensor Approximation

After approximating the light transfer matrix Tx with SRBFs, the
size of the PRT data sets is still bulky for real-time applications. To
solve this problem, the CPCA algorithm [Sloan et al. 2003] is ap-
plied to find inter-vertex data redundancy for a diffuse object, while
the transfer matrices of a glossy object are organized as a 3rd-order
tensor T (Fig. 3), and compressed using the proposed CTA algo-
rithm. A simple and intuitive method for CTA is to classify vertices
into disjoint regions according to heuristic objective functions, and
then decompose the sub-tensor within each region using the optimal
N -mode SVD algorithm [De Lathauwer et al. 2000]. However, it is
often hard to define objective functions consistent with the approx-
imation errors of tensor decomposition. Therefore, our approach
updates cluster members based on approximation errors at the end
of each iteration, and guarantees at least a locally optimal solution.

5.2.1 Overview

The proposed CTA algorithm consists of three phases: the initial-
ization, clustering, and approximation phase. In the initialization
phase, an initial solution to cluster members is obtained. Each ver-
tex is then iteratively re-classified into the cluster with the mini-
mum approximation error until convergence in the clustering phase.
Since the number of member vertices varies from cluster to cluster,
straightforwardly employing the optimal N -mode SVD algorithm
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Figure 3: The tensor representation for precomputed light transfer
matrices. The transfer matrices are organized as a 3rd-order tensor
T ∈ RIview×Ilight×Ivert .

would be difficult to compute approximation errors. To solve this
issue, we also derive the dual mode-3 basis matrices. Finally, the
optimal basis matrices of each cluster are extracted in the approxi-
mation phase.

Let Iview denote the number of BRDF approximation terms, i.e.
K, Ilight be the number of SRBFs for modeling the light transfer
functions, i.e. nt, and Ivert represent the total number of vertices.
The proposed CTA algorithm classifies T ∈ RIview×Ilight×Ivert

into a set of sub-tensors T = {T1, . . . ,Tnc}, where nc denotes
the desired number of clusters, and Tc ∈ RIview×Ilight×Ivert,c is
the sub-tensor within cluster c whose number of member vertices is
Ivert,c . LetRview ,Rlight , andRvert be the reduced ranks of each
mode. Each sub-tensor is decomposed by extracting the basis matri-
ces of each mode, which are denoted by Uview ∈ RIview×Rview ,
Ulight,c ∈ RIlight×Rlight , and Uvert,c ∈ RIvert,c×Rvert . To it-
eratively update cluster members and facilitate the rendering pro-
cess at run-time, for each cluster, another orthonormal vertex ba-
sis matrix Vvert,c ∈ RRvert×(RviewRlight), which we call the dual
mode-3 basis matrix, is derived from Uvert,c.

Note that for the 1st mode, i.e. the view mode, due to performance
issues at run-time (Section 6), only a single basis matrix is deter-
mined for all clusters, rather than an individual basis matrix for
each cluster. This scheme generally does not result in significant
loss of information, since the view mode is highly dependent on
BRDFs. For objects with multiple BRDFs, T can be split into mul-
tiple groups, one group for each BRDF, and CTA is then performed
within each group. To avoid confusion, although the block-based
mode-n product [Wang et al. 2005] is applied, we use the notation
as if T were not partitioned into blocks.

5.2.2 Initialization Phase

The proposed CTA algorithm starts with an initial solution to clus-
ter members. After randomly selecting vertices as cluster repre-
sentatives and unfolding Tx into a vector uf (Tx) , each vertex
is classified by performing several iterations of the ELBG algo-
rithm [Patanè and Russo 2001]. T is then partitioned into blocks
for efficient computation of tensor approximation. The mode-1
basis matrix Uview is also extracted with all other basis matri-
ces initialized to the identity matrix I, and a reduced core ten-
sor Zview ∈ RRview×Ilight×Ivert for the clustering phase is de-
termined by

Zview = T ×1 UT
view . (14)

5.2.3 Clustering Phase

In this phase, each vertex is iteratively re-classified into the cluster
with the minimum approximation error ‖uf (Tx)− uf (T̃x,c)‖2,
where T̃x,c denotes the approximated light transfer matrix of vertex
x with respect to cluster c .

Given Zview and an initial solution to cluster members, Zview

is first decomposed into isolated sub-tensors, and the sub-tensor
within cluster c is denoted by Zview,c . The block-based optimal
N -mode SVD algorithm [Wang et al. 2005] is then applied to ex-
tract both Ulight,c and Uvert,c from Zview,c . To facilitate the
computation of approximation errors for vertices outside cluster c ,
the dual mode-3 basis matrix Vvert,c is derived as

Zc = Zview,c ×2 UT
light,c ×3 UT

vert,c , (15)

Vvert,c =
{
uf 3

(
Zc

)[
uf 3

(
Zc

)]T}− 1
2 uf 3

(
Zc

)
, (16)

where uf 3(Zc) ∈ RRvert×(RviewRlight) denotes the unfolded ma-
trix along the 3rd mode, i.e. the vertex mode. Since the rows of
uf 3(Zc) are orthogonal, Eq. 16 is equivalent to the normalization
of each row of uf 3(Zc) .

After that, each vertex is re-classified into the cluster with the min-
imum approximation error, and T̃x,c is computed by

Wx,c = Vvert,c uf
(
UT
view Tx Ulight,c

)
, (17)

T̃x,c = Uview uf -1(Rlight ,V T
vert,c Wx,c

)
UT
light,c , (18)

where Wx,c ∈ RRvert is called the projected weights of vertex
x with respect to cluster c , and uf -1(Rlight ,V

T
vert,c Wx,c) rep-

resents the inverse operation of unfolding, which refolds the vec-
tor V T

vert,c Wx,c into a matrix in RRview×Rlight , whose compo-
nents in the i-th row coincide with the ((i− 1)·Rlight + 1)-th to
(i·Rlight)-th elements of V T

vert,c Wx,c . The entire process of this
phase iterates until no vertices are assigned to another cluster, or a
maximum iteration count is reached.

5.2.4 Approximation Phase

Based on the clustered results in the clustering phase, we perform
an additional approximation phase to obtain the optimal basis ma-
trices Uview , Ulight,c , Uvert,c , and Vvert,c .

Given Ulight,c and Uvert,c from the last iteration of the clustering
phase, each Tc is first projected onto the high-dimensional space
spanned by Ulight,c and Uvert,c to obtain Z light,vert,c , where

Z light,vert,c = Tc ×2 UT
light,c ×3 UT

vert,c . (19)

The columns of Uview are then updated by extracting the first
Rview columns of the left singular matrix from the SVD of
uf 1(Z light,vert,c) . Next, Zview is re-calculated as Eq. 14, and
decomposed into Zview,c for each cluster, which is utilized to up-
date Ulight,c and Uvert,c . This process iterates until all the basis
matrices converge, or the iteration count exceeds a threshold. Fi-
nally, the dual mode-3 matrix Vvert,c of each cluster and the pro-
jected weights of each vertex Wx,c are obtained by Eq. 16 and Eq.
17.

5.3 Modeling Lighting Environments with Scat-
tered SRBFs

To efficiently shade objects whose light transfer functions are rep-
resented in SRBFs, the lighting environment L(ηi) is also modeled
with SRBFs. Although L(ηi) can be approximated by adopting a



(a) Reference (b) SH basis (c) Wavelets (d) Scattered SRBFs
SE= 96.06% SE= 46.60% SE= 3.14%

Figure 4: Comparison of the approximated results for (a) the St. Pe-
ter’s Basilica HDR lighting environment using (b) OLS projection
onto the SH basis, (c) area-weighted wavelet technique, and (d) the
scattered SRBF fitting algorithm. Each result is reconstructed with
972 coefficients or parameters.

set of uniform SRBFs, we take a step further to obtain a compact set
of scattered SRBFs for approximating L(ηi). The entire process is
formulated as an optimization problem, and handled by minimizing
squared approximation errors.

Given a desired number of SRBFs nl, we intend to learn three sets
of parameters: the set of SRBF coefficients L = {L1, . . . , Lnl},
the set of SRBF centers Ξ2 , and the set of SRBF bandwidth param-
eters Λ2 , such that the following objective function is minimized:{

L,Ξ2,Λ2

}
= arg min{

L,Ξ2,Λ2

}∫
S2

∣∣∣L(ηi)− L̃(ηi)
∣∣∣2dω(ηi) , (20)

L̃(ηi) =

nl∑
j=1

LjG(ηi · ξ2,j ;λ2,j) . (21)

Instead of solving all the three sets of parameters together, we pro-
pose an iterative approach, which optimizes only one set of param-
eters at each step, while leaving the others fixed. This scheme often
yields better results, since the three sets of parameters are highly
coupled with each other. The proposed scattered SRBF fitting algo-
rithm is summarized as follows:

1. Given an initial guess or the results from previous iteration,
the L-BFGS-B solver [Zhu et al. 1997] is performed to op-
timize the set of SRBF centers followed by the set of SRBF
bandwidth parameters.

2. The set of SRBF coefficients is then obtained using OLS or
RLS projection.

3. This process iterates until the difference of squared errors be-
tween current and previous iterations falls below a threshold,
or a user-defined iteration count is reached.

4. Finally, an additional stage can be performed to optimize all
the parameters simultaneously.

Since the approximated results often depend on the initial seeds
of parameters, our system automatically determines a reasonable
guess based on heuristics in the hope of achieving smaller approx-
imation errors and accelerating the computation. Given a lighting
environment, we first estimate the coverage of each direction in a
dense set of unit directions Ei = {ηi,1, . . . , ηi,n}, and construct a
priority queue. To prevent the initial SRBF centers from concen-
trated in local regions, after selecting a direction ηi,j as an initial
SRBF center, all the directions which locate within the coverage
of ηi,j are marked such that they will not be chosen in subsequent
steps. This process continues until all the initial SRBF centers are
selected. If all directions are marked before all the SRBF centers
are determined, we reduce the coverage of each direction and the

selected centers, update the marks, and re-loop over the priority
queue to choose the remaining centers. Finally, the initial SRBF
bandwidth parameters are derived from the coverage of the selected
directions, while the initial guess about the set of SRBF coefficients
is obtained by projecting the lighting environment onto the initial
SRBFs in the OLS or RLS sense.

The coverage of a direction ηi,j is estimated from its resemblance
to nearby sampling directions, and can be computed by a heuris-
tic approach. At first, we loop over the directions ηi,j′ in Ei, in
the order from nearest to farthest with respect to ηi,j , until the ra-
tio of nearby directions, whose squared difference of the incident
radiance between ηi,j and ηi,j′ , i.e. |L(ηi,j)− L(ηi,j′)|2, exceeds
a user-defined threshold, is reached. This set of nearby directions
forms a cone-shaped region centered on ηi,j . The coverage of ηi,j
is then defined as the geodesic distance between ηi,j and the far-
thest ηi,j′ within this cone, and set as the variance of a SRBF for
computing its initial bandwidth parameter. Based on the coverage
of each direction, the priority queue is constructed by sorting the
coverage-weighted incident radiance of each sampling direction.

Experimental results indicate that this heuristic guess of initial pa-
rameters generally works better than taking a set of uniform SRBFs
to initialize the optimization process, and reduces the computation
time by a factor of 2-4. Typically, it takes less than 9 minutes to
approximate a 6× 32× 32 cube map with 162 SRBFs (972 param-
eters). To accelerate the process of fitting a high-resolution cube
map, the map can be down-sampled and approximated using the
proposed algorithm. The resulting parameters are then taken as an
initial solution to approximate the high-resolution map.

Figure 4 compares the reconstructed results of a HDR lighting
environment using the SH basis, the area-weighted wavelets [Ng
et al. 2003], and our approach. The proposed approach captures
most features with only 162 SRBFs, whereas the result of wavelet
method fails to distinguish some features, especially the high-
energy lights at the ceiling. For the SH basis, high-energy signals
dominate over low-energy ones, producing some ringing effects.

6 Run-Time Rendering Process

This section describes the rendering process for glossy objects
whose light transfer functions are compressed using the proposed
CTA algorithm. For diffuse objects, since the PRT data sets are
encoded using CPCA, the rendering process is the same as that in
[Sloan et al. 2003].

At run-time, the shading color of a point x belonging to cluster c is
reconstructed by

Cx,ηo = Eηo

(
B̃x

)
= Eηo

(
Φx T̃x,c

)
A L , (22)

where Eηo(F) denotes the evaluation of F in direction ηo, and A
is the interpolation matrix. Since the same set of SRBFs is applied
to model Tx at each vertex, The subscript x of the interpolation
matrix is omitted in Eq. 22. By substituting Eq. 18 into Eq. 22, we
can derive the following shading equation:

Cx,ηo = Eηo

(
Φ′x
)
uf -1(Rlight ,V T

vert,c Wx,c

)
L′c

= Eηo

(
Φ′x
)Rvert∑
j=1

{(
Wx,c

)
j
uf -1

(
Rlight ,

(
V T
vert,c

)
j

)
L′c

}
,

Φ′x = Φx Uview , L′c = UT
light,c A L = UT

light,c L′ , (23)

where
(
V T
vert,c

)
j

and (Wx,c)j denote the j-th column of V T
vert,c

and the j-th component of Wx,c .



Model Teapot Buddha Bunny

Vertices 41k 52k 61k
BRDF Terms 16 16 16

Clusters 110 140 170
Reduced Rank Rview 8 8 8
Reduced Rank Rlight 48 48 48
Reduced Rank Rvert 24 24 24

Raw PRT Data 15.11 GB 19.12 GB 22.35 GB
PRT Data in SRBFs 0.79 GB 1.00 Gb 1.17 GB

CTA Compressed Data 10.37 MB 13.18 MB 15.89 MB
SE Ratio (SRBF) 1.23% 1.41% 1.28%

SE Ratio (SRBF + CTA) 3.91% 3.75% 3.64%
PRT Computation Time 1 hr 53 min 2 hr 19 min 2 hr 47 min
CTA Compression Time 16 hr 6 min 24 hr 16 min 29 hr 2 min

Run-Time FPS 74.67/15.83 51.12/13.27 48.65/10.42

Table 1: Statistics and timing measurements of the proposed ap-
proach using the Cook-Torrance BRDF model [Cook and Torrance
1982] and the St. Peter’s Basilica HDR lighting environment. The
run-time FPS lists the rendering performance when the viewpoint
changes or the lighting environment changes (view/light). The SE
ratio is the ratio of reconstructed squared errors between the com-
pressed data and the raw data.

The run-time PRT rendering process thus consists of the following
four steps:

1. Align L with objects. This includes rotating the set of SRBF
centers Ξ2 , performing the spherical singular integrals to ac-
quire A , and computing the product L′ = A L .

2. For each cluster c , obtain the representative light transfer ma-
trix Rc , whose j-th column is uf -1(Rlight ,

(
V T
vert,c

)
j
) L′c .

3. For each vertex, reconstruct the light transfer vector Rx by
the weighted summation Rc Wx,c .

4. For each shading point, evaluate the view-dependent BRDF
vector Eηo(Φ′x). The final shading color is then the dot prod-
uct of Eηo(Φ′x) and Rx .

We perform Step 1 and Step 2 on CPUs, whereas the other two
steps are executed on GPUs. Step 1 is a per-object process, which
is performed when the alignment of a lighting environment with an
object is required. Step 2 is a per-cluster operation rather than a
per-vertex one. Since the number of clusters is much smaller than
the number of vertices, Step 2 greatly reduces the computation time.
The representative light transfer matrix of each cluster is then trans-
ferred to GPUs to execute Step 3 in the vertex shader and Step 4 in
the pixel shader. Note that the evaluation of Eηo(Φ′x) in Step 4 is
conducted using a pre-filtered texture. To prevent aliasing artifacts,
this texture is super-sampled, and then filtered down to a desired
resolution.

7 Experimental Results and Discussion

7.1 Experimental Results

Table 1 lists the statistics and timing measurements of the pro-
posed approach for various models. All of the simulation timings
were measured on an AMD Athlon64 FX-55 PC with an NVIDIA
GeForce 6800 GPU. The Gaussian SRBFs were adopted to repre-
sent the light transfer functions as well as the lighting environments.
To improve rendering performance, the super-clustering technique
[Sloan et al. 2003] was also applied to decrease the number of

Algorithm All-Frequency CPCA Our Approach

Light Basis Dimensions 0 642×48
Vertex Basis Dimensions 256×8 48×8

Projected Weights 12 24
Clusters 140×24 140

Compressed Data 48.41 MB 13.18 MB
SE Ratio 3.09% 3.75%

Run-Time FPS 13.34/1.65 51.12/13.27

Table 2: Comparison of statistics and timing measurements be-
tween our approach and the all-frequency CPCA algorithm for the
buddha model. The raw PRT data for deriving the SE ratio are pre-
computed by setting the BRDF terms to 16.

redrawn triangles. Table 1 shows that our approach can achieve
high compression ratios and real-time rendering performance using
modern GPUs. For our configurations, the SRBF representation
followed by quantization reduce the raw data by 94.7%, and CTA
further encodes the approximated results by a factor of 73 on aver-
age. The total compression ratio is thus beyond 1000:1.

In all rendered results, a diffuse plane was placed under each model
to demonstrate the ability of SRBFs to handle all-frequency shad-
ows. The SRBF representation typically provides visually pleasant
shadows with hundreds of SRBFs. Although occasionally the con-
tours of shadow boundaries appear to be too smooth such that some
sharp features of shadowing objects are lost, a set of denser SRBFs
can always be adopted to faithfully model the raw data at the cost
of more compression time and slower rendering performance.

Table 2 and Figure 1 compare our approach with the all-frequency
CPCA algorithm [Liu et al. 2004]. While the proposed scheme
renders objects with comparable quality in real time, the perfor-
mance of all-frequency CPCA is only at interactive rates. There
are two main reasons that enable our approach to achieve real-time
performance. First, we adopt SRBFs to approximate light trans-
fer functions with much fewer coefficients. Second, to accelerate
compression time and allow CPCA adaptive to the large dimension
of the light mode, all-frequency CPCA statically partitioned the
light mode into several segments. However, while performing per-
vertex operations on GPUs at run-time, objects were rendered sev-
eral times for each segment separately. Memory bandwidths were
consumed for transferring the partially reconstructed data of each
segment to GPUs. By contrast, our approach does not partition the
light mode, since usually the dimension of this mode is not so large.
Instead, we increase the reduced rank of the vertex mode to obtain
lower approximation errors. Therefore, objects can be rendered on
GPUs at real-time rates, without much overhead.

The main cost of our approach lies in the clustering phase of CTA
(Section 5.2.3), since we search for a locally optimal solution to the
basis matrices of each cluster. Other heuristic clustering approaches
can be applied to decrease the compression time, while increasing
the number of clusters or the values of reduced ranks to obtain sim-
ilar image quality. However, this scheme generally leads to lower
compression ratios as well as slower run-time performance. We
intend to reduce the compression time, or develop heuristic error
metrics to approximate a locally optimal solution in the future.

7.2 Discussion

Compared with previous all-frequency PRT algorithms, the advan-
tages of our approach are as follows:

• Our method is able to render all-frequency effects from com-
pact compressed data at real-time rates.



• With the SRBF representation, radiance functions can be
modeled in their intrinsic domain to avoid false boundaries,
distortions, and unnecessary re-parameterizations.

• SRBFs behave as noise filters to prevent aliasing artifacts, and
usually lead to visually pleasant results.

• Our CTA algorithm further reduces the light mode to exploit
the coherence that can not be found by all-frequency CPCA.

When lighting environments change, CTA also allows efficient
computation of Step 2 (Section 6), whose cost depends on
Ilight×Rlight and Rlight×Rvert . For the all-frequency CPCA al-
gorithm, the environments are convoluted with the vertex basis ma-
trices of each cluster. Therefore, the computational cost depends on
Ilight×Iview×Rvert , which is more expensive than our approach.

There are also some disadvantages of our approach:

• The off-line costs are higher than previous algorithms.

• Unlike ZH [Sloan et al. 2005], per-vertex rotations of light
transfer functions currently can not be handled.

• After modeling light transfer functions with uniform SRBFs,
some sharp features, such as all-frequency shadows, may be
more approximate than wavelet methods.

• For highly specular BRDFs, such as all-frequency mirroring
effects, the technique proposed by Green et al. [2006] may be
better than our approach.

• Our method does not support fully dynamic changes of light-
ing environments at real-time rates, whereas previous algo-
rithms do. The environments are only allowed to rotate effi-
ciently at run-time.

However, in Section 5.3, we showed that the scattered SRBF repre-
sentation can outperform the area-weighted wavelet technique for
modeling lighting environments. If the scattered SRBF representa-
tion is applied to each vertex, the second and third disadvantages
could be overwhelmed. Our current scheme is merely a trade-
off between approximation errors and computational costs. As for
highly specular BRDFs, the technique of Green et al. and our ap-
proach could be integrated as a two-pass rendering process to over-
come the fourth disadvantage.

8 Conclusions

The proposed approach overcomes the major drawbacks of previ-
ous all-frequency PRT algorithms, and achieves real-time render-
ing performance without sacrificing much image quality. Experi-
mental results reveal that SRBFs are effective in dealing with high-
frequency signals, and provide an intrinsic representation for PRT
data sets in the spherical domain. The proposed SRBF fitting algo-
rithm also allows lighting environments to be modeled with a com-
pact set of scattered SRBFs. Although the PRT data sets in SRBF
representation are still cumbersome, they were successfully com-
pressed to less than 0.1% of the raw data using the proposed CTA
algorithm. With some modifications, we believe that CTA may be
applicable to dynamic PRT data sets and other data-driven models,
such as image-based rendering.

There are many possible applications of SRBFs and the scattered
SRBF fitting algorithm. For example, we may adopt SRBFs to rep-
resent other spherical functions, such as BRDFs and BTFs, and then
apply the results to efficiently render objects. Additionally, since a
SRBF is a distribution on Sm, learning the parameters of scattered
SRBFs for a spherical function is equivalent to exploring the dis-
tribution of this function. Thus, SRBFs may be incorporated into

importance sampling techniques to decrease the computation time
of ray tracing algorithms.

In the future, we intend to improve the performance and quality of
the scattered SRBF fitting algorithm, and solve the rendering is-
sues on GPUs at run-time. Thus, the scattered SRBF representation
can be applied to model the light transfer functions at each vertex.
We are also interested in extending this work to compress the PRT
data sets of dynamic scenes, such as the precomputed shadow fields
[Zhou et al. 2005].

Acknowledgements

We would like to thank Chih-Hao Chen for providing his PRT
code, the members of NCTU Computer Graphics Laboratory for
profound discussions, the SIGGRAPH anonymous reviewers for
valuable comments and suggestions. This work was supported by
the National Science Council of Taiwan under Grant No. NSC94-
2213-E009-092 and a Microsoft Research Asia ”Gaming & Graph-
ics Theme 2005” award.

References

COOK, R. L., AND TORRANCE, K. E. 1982. A Reflectance Model
for Computer Graphics. ACM Transactions on Graphics 1, 1, 7–
24.

DE LATHAUWER, L., DE MOOR, B., AND VANDEWALLE, J.
2000. On the Best Rank-1 and Rank-(R1, R2, . . . , Rn) Approx-
imation of Higher-Order Tensors. SIAM Journal on Matrix Anal-
ysis and Applications 21, 4, 1324–1342.

FREEDEN, W., AND WINDHEUSER, U. 1997. Combined Spherical
Harmonic and Wavelet Expansion—A Future Concept in Earth’s
Gravitational Determination. Applied and Computational Har-
monic Analysis 4, 1, 1–37.

FREEDEN, W., GERVENS, T., AND SCHREINER, M. 1998. Con-
structive Approximation on the Sphere. Oxford University Press.

GREEN, P., KAUTZ, J., MATUSIK, W., AND DURAND, F. 2006.
View-Dependent Precomputed Light Transport Using Nonlinear
Gaussian Function Approximations. In Proceedings of ACM
Symposium on Interactive 3D Graphics and Games 2006, 7–14.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing In-
teractive Dynamic Deformable Scenes. ACM Transactions on
Graphics 22, 3, 879–887.

KAJIYA, J. T. 1986. The Rendering Equation. In Proceedings of
ACM SIGGRAPH 1986, 143–150.

KAUTZ, J., LEHTINEN, J., AND AILA, T. 2004. Hemispherical
Rasterization for Self-Shadowing of Dynamic Objects. In Pro-
ceedings of Eurographics Symposium on Rendering 2004, 179–
184.

KRISTENSEN, A. W., AKENINE-MÖLLER, T., AND JENSEN,
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Appendix

A The Convolution of Two Multi-Scale
Gaussian SRBFs

For the convolution of two single-scale Gaussian SRBFs, i.e. Gaus-
sian SRBFs with the same bandwidth parameters, Narcowich and
Ward [1996] derived an equation. However, single-scale SRBFs
become inadequate to model lighting environments with scattered
SRBFs, whose bandwidth parameters should be adaptive to the in-
put data. In this appendix, we introduce the spherical singular inte-
gral of two multi-scale Gaussian SRBFs, and derive an equation for
efficient computation. The case of multi-scale Abel-Poisson SRBFs
is much simple to be handled by Eq. 5.

Suppose that we intend to compute the convolution of two multi-
scale Gaussian SRBFs, which corresponds to∫

Sm
GGau(η · ξg;λg)HGau(η · ξh;λh) dω(η)

= e−(λg+λh)

∫
Sm
eη·(λgξg+λhξh) dω(η) . (24)

Since this convolution is rotation-invariant, we can replace r, where
r = λgξg + λhξh , with r′ = (‖r‖, 0, . . . , 0 ) without losing gen-
erality. Rewrite the integral on the right side of Eq. 24 in terms of
spherical coordinates in Rm+1, and substitute r with r′ to obtain∫

Sm
eη·(λgξg+λhξh) dω(η)

=

∫ 2π

0

· · ·
∫ π

0

e(η·r′) sinm−1 θ1 · · · sin θm−1 dθ1· · · dθm

= ωm−1

∫ π

0

e(‖r‖ cos θ1) sinm−1 θ1 dθ1

= ωm−1

∫ 1

−1

e(‖r‖t)(1 − t2)m−2
2 dt , t = cos θ1 . (25)

From [Watson 1944], the modified Bessel function of the first kind
of order ν can be written in the integral form as

Iν(x) =

(
1
2
x
)ν

Γ
(
ν + 1

2

)
Γ
(

1
2

) ∫ 1

−1

e±xz
(
1− z2)ν− 1

2 dz . (26)

By combining the last line of Eq. 25 with Eq. 26 and substituting
the result into Eq. 24, Eq. 6 can be derived. Additionally, for the
special case of m = 2, we can further simplify Eq. 6 into(

GGau ∗2 HGau)(ξg · ξh;λg,λh) =

4πe−(λg+λh) sinh
(
‖r‖
)

‖r‖ .
(27)



(a) Raw PRT data (b) Uncompressed PRT data in SRBFs (c) Rlight = 48 , Rvert = 24

(15.89 MB, 48.65/10.42 fps )

(d) Rlight = 24 , Rvert = 24 (e) Rlight = 48 , Rvert = 12 (f) Rlight = 24 , Rvert = 12

( 9.40 MB, 49.21/16.45 fps ) (13.00 MB, 53.47/11.13 fps ) ( 7.26 MB, 53.96/16.84 fps )

Figure 5: Rendered results with various configurations of CTA. The compressed data size and the run-time FPS are shown in parentheses.

(a) Raw PRT data (b) Uncompressed PRT data in SRBFs (c) Compressed PRT data in SRBFs using CTA

Figure 6: Rendered results of the teapot model.

(a) Raw PRT data (b) Uncompressed PRT data in SRBFs (c) Compressed PRT data in SRBFs using CTA

Figure 7: Rendered results of the bunny model.


