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With the increasing demands for photo-realistic image synthesis in real
time, we propose a sparse multilinear model, which is named K-clustered
tensor approximation (K-CTA), to efficiently analyze and approximate
large-scale multidimensional visual data sets, so that both storage space and
rendering time are substantially reduced. K-CTA not only extends previ-
ous work on clustered tensor approximation (CTA) to exploit inter-cluster
coherence, but also allows a compact and sparse representation for high-
dimensional data sets with just a few low-order factors and reduced multi-
dimensional cluster core tensors. Thus, K-CTA can be regarded as a sparse
extension of CTA and a multilinear generalization of sparse representation.
Experimental results demonstrate that K-CTA can accurately approximate
spatially varying visual data sets, such as bidirectional texture functions,
view-dependent occlusion texture functions, and bi-scale radiance transfer
functions for efficient rendering in real-time applications.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture; E.4 [Data]: Coding and Information Theory—Data compaction and
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1. INTRODUCTION

Synthesizing photo-realistic images is a significant and ambitious
goal in computer graphics. Researchers have conventionally fo-
cused on developing analytic models and simulation-based algo-
rithms to achieve photo-realistic image synthesis in real time. Nev-
ertheless, real-world object shape, surface reflectance, micro-scale
appearance, and natural illumination effects are frequently too
complicated to be synthesized using analytic models or simple sim-
ulations.

State-of-the-art methods, which are known as data-driven mod-
els, thus perform rendering from cached or pre-sampled data that
represent the results of complex procedures or even real-world
measurement. Although data-driven models can avoid computa-
tionally expensive procedures at run-time and generate high-quality
images, they are usually subject to cumbersome pre-sampled obser-
vations that consume a large amount of storage space and memory
bandwidth. This problem becomes even worse when we have to
record more information to account for more degrees of freedom
and more detailed descriptions of the desired visual effects. Nowa-
days, the amount of pre-sampled data often exceeds tens or hun-
dreds of gigabytes, so that the performance of data-driven models
may be even slower than directly employing complex procedures.

To solve this problem, we propose a sparse multilinear represen-
tation, namely K-CTA, for compressing and rendering large-scale
visual data sets. By retaining the structures of the input data as
a multidimensional array, namely a tensor, K-CTA extends CTA
[Tsai and Shih 2006] to classify each sub-tensor along the clus-
tered mode into more than one cluster, say Km clusters, so that
inter-cluster coherence can be exploited by mixing the decomposed
results of these clusters. To reduce run-time computational costs
for real-time applications, K-CTA also constrains that each sub-
tensor belongs to exactly Km clusters, thus providing a sparse rep-
resentation in which the sparsity is totally under user control. In
other words, the number of non-zero elements on which each sub-
tensor depends is guaranteed as a constant. This especially leads
to an easy-to-optimize and efficient shader program on graphics
processing units (GPUs). Note that one can instead employ an ap-
proximation threshold to determine the value of Km for different
sub-tensors. Nevertheless, it usually needs to add redundant zero
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(a) Raw data (b) N -SVD (16.71 FPS) (c) CTA (78.39 FPS) (d) K-CTA (71.58 FPS)

Fig. 1. Rendered images of all-frequency BRT based on different tensor representations for meso-structures, including N -SVD [De Lathauwer et al. 2000],
CTA [Tsai and Shih 2006], and K-CTA. In each sub-figure, from top to bottom: rendered images; enlarged images; absolute difference images (scaled by a
factor of 3). Although both CTA and K-CTA allow real-time rendering performance, CTA sometimes produces noticeable artifacts when the viewpoint/object
moves. For the artifacts of CTA, please refer to our accompanying video and Fig. 2. The model Bunny was provided in courtesy of Stanford Computer Graphics
Laboratory [2011].

(a) CTA (105.35 FPS) (b) K-CTA (101.42 FPS)

Fig. 2. Artifacts of the rendered images based on CTA. In each sub-figure,
from top to bottom: rendered images; enlarged images. Although the run-
time rendering rates of CTA and K-CTA are similar, CTA may produce
noticeable discontinuities when the viewpoint/object moves, especially at
small grazing angles of illumination/view directions. Please refer to our ac-
companying video for more comparisons.

entries for fast run-time rendering performance, in order to avoid
dynamic branches on GPUs.

Applications of K-CTA to spatially varying surface appearance,
such as bidirectional texture functions (BTFs) [Dana et al. 1999],
view-dependent occlusion texture functions (VOTFs), and bi-scale
radiance transfer (BRT) [Sloan et al. 2003b], demonstrate the ef-
fectiveness and efficiency of K-CTA. Experimental results further
reveal that the inter-cluster coherence ignored by CTA is impor-
tant to the approximation of sub-tensors close to cluster boundaries,
since their approximation errors can be compensated by other clus-

ters. Moreover, the sparse property of K-CTA also provides a good
comprise between image quality and reconstruction costs.

The remainder of this article is organized as follows. Section 2
reviews the literature on recent advances in dimensionality reduc-
tion, tensor approximation, and sparse representation. Next, Sec-
tion 3 briefly presents preliminaries and background of tensor ap-
proximation and CTA for completeness. Then, Section 4, which is
the main part of this article, introduces a novel tensor decomposi-
tion algorithm, namely K-CTA, to allow a multilinear and sparse
representation for multidimensional visual data sets. Section 5 also
considers some practical issues of K-CTA, such as initialization,
the extraction of global basis matrices, and the degeneracy and
convergence problems. Applications of K-CTA to the compression
of BTFs, VOTFs, and all-frequency BRT data, with experimental
statistics and comparisons to related methods, are demonstrated in
Section 6. Finally, Section 7 gives conclusions and future research
directions on K-CTA for real-time rendering.

2. RELATED WORK

2.1 Dimensionality Reduction

The high-dimensional ”curse” has driven the advances of dimen-
sionality reduction techniques for a long time. Scientists gener-
ally assume that low-dimensional manifolds are embedded in their
high-dimensional observations, and could be estimated by linear or
non-linear transformations. One of the most popular linear mod-
els may be principal component analysis (PCA) [Jolliffe 2002]. In
computer graphics, PCA has been widely adopted to analyze and
compress various types of visual data, such as reflectance data [Ma-
tusik et al. 2003] and spatially varying appearance models [Sattler
et al. 2003; Wang et al. 2003]. In general, linear models are compu-
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tationally efficient and easy to implement, but they are inadequate
to analyze data sets with non-linear structures.

Apart from linear models, numerous dimensionality reduction
algorithms have been proposed to explore non-linear correlations
among data, for example local PCA (or clustered PCA) [Kamb-
hatla and Leen 1997], kernel PCA [Schölkopf et al. 1998], isomap
[Tenenbaum et al. 2000], locally linear embedding [Roweis and
Saul 2000], to name a few. Although the structures of real-world
observations are complicated and globally non-linear, many non-
linear models assume that local correlations are approximately lin-
ear. Thus, the observations could be ”locally” transformed into low-
dimensional linear sub-spaces without a significant loss of infor-
mation. Compared to linear models, however, non-linear models
are computationally more expensive, and sometimes may be in-
tractable for large-scale data sets. Additionally, not all non-linear
models are generative. This frequently prevents some of them from
practical applications of data-driven rendering. Despite these dis-
advantages, successful applications of non-linear models are still
prevalent in computer graphics, for instance precomputed radiance
transfer (PRT) [Sloan et al. 2003a], BTF compression [Müller et al.
2003; 2004], texture synthesis [Lefebvre and Hoppe 2006], and ma-
terial modeling [Matusik et al. 2003].

2.2 Tensor Approximation

In recent years, tensor approximation (also called multilinear mod-
els or multiway analysis) [De Lathauwer et al. 2000; Kolda and
Bader 2009; Smilde et al. 2004] has become widespread and caught
a lot of attention. It can be regarded as a generalization of singu-
lar value decomposition (SVD), where data samples are processed
in their intrinsic form as a multidimensional array, and separate
reduction is allowed along each dimension. Unlike linear and non-
linear models in dimensionality reduction, tensor approximation re-
lies on decomposing a high-dimensional space into multiple low-
dimensional sub-spaces that are, respectively, associated with each
mode of observations to remove the curse of dimensionality. The
extracted low-order factors in each sub-space then can be combined
to effectively model the original high-dimensional space. In this
way, multilinear models successfully preserve the intrinsic struc-
tures and important information of observations, and thus over-
whelm one of the main disadvantages of previous dimensionality
reduction techniques.

In computer graphics, tensor approximation has also been suc-
cessfully extended [Tsai and Shih 2006; Wu et al. 2008] and ap-
plied to various applications, such as data-driven rendering [Sun
et al. 2007; Vasilescu and Terzopoulos 2004; Wang et al. 2005] and
human facial processing [Vasilescu and Terzopoulos 2003; Vlasic
et al. 2005]. Even some matrix factorization methods [Lawrence
et al. 2006; Nayar et al. 2004; Suykens et al. 2003] are implicitly
related to multilinear models. Although tensor-based methods have
been shown more powerful and flexible than linear models, most
of them are inadequate for real-time applications. Even after apply-
ing the popular N -mode SVD (N -SVD) algorithm [De Lathauwer
et al. 2000] to derive an optimal approximation of the input tensor,
the amount of compressed data is still too cumbersome for fast run-
time rendering. Although CTA can reduce run-time computational
costs by dividing input data into disjoint regions, it meanwhile dis-
regards inter-cluster correlations. Moreover, similar to traditional
clustering methods, CTA also suffers from an inappropriate initial
guess. K-CTA thus targets at overcoming these major drawbacks
of CTA by searching for an optimal reconstruction of input tensor
across the sub-spaces of different clusters.

2.3 Sparse Representation

Recently, there has been a growing interest in modeling real-world
observations as sparse linear combinations of atoms (or basis func-
tions) in an over-complete dictionary [Elad et al. 2010; Wright et al.
2010]. Although the underlying physical process of a natural phe-
nomenon may be a complex function or mixture of heterogeneous
elements, it is frequently desirable to represent observations in a
sparse form that allows efficient data analysis. However, this intu-
itive concept is far from easy to achieve in practice. Even with a
fixed dictionary, searching for an optimal solution in which each
signal exactly depends on a given number of atoms was proved
NP-hard [Davis et al. 1997]. Therefore, many practical algorithms
instead consider sub-optimal solutions, such as matching pursuit
[Mallat and Zhang 1993], basis pursuit [Chen et al. 2001], and
Bayesian models [Kreutz-Delgado et al. 2003].

In addition to pursuit algorithms and Bayesian models, previous
studies have also reported a close connection between sparse rep-
resentation and vector quantization [Kreutz-Delgado et al. 2003].
K-SVD [Aharon et al. 2006] thus generalized K-means cluster-
ing to seek sparse representations by alternating between the pur-
suit process and dictionary learning. Nevertheless, rather than us-
ing Bayesian inference, it applied SVD to simultaneously update
dictionary atoms and non-zero basis coefficients in the dictionary
learning stage, so that the convergence rate could be improved.

In computer graphics, Ruiters and Klein [2009] also developed a
sparse representation based on K-SVD for BTF compression. Nev-
ertheless, their method simply applies K-SVD to each dimension
of the input BTF, and cannot derive a locally optimal solution. Fur-
thermore, it is also difficult to achieve efficient performance for
data-driven rendering applications. By contrast, we propose a novel
sparse multilinear model, namely K-CTA, that can easily achieve
real-time rendering rates for compressed BTFs. K-CTA also com-
bines the advantages of CTA and K-SVD to bridge the gap between
sparse representation and tensor approximation. Several important
theorems of K-CTA are proved and discussed, showing that K-CTA
resembles the behaviors of K-SVD in the tensor space and is a nat-
ural extension of CTA. As a result, K-SVD is further generalized to
allow high-dimensional data analysis based on multilinear algebra,
without destroying the intrinsic structures of observations.

3. PRELIMINARIES AND BACKGROUND

This section briefly reviews the background of tensor approxima-
tion1 and CTA. For completeness, notation and basic definitions of
tensor operators are also introduced. Although the out-of-core ten-
sor decomposition algorithm [Wang et al. 2005] was applied in our
experiments, in-core tensor notation is adopted in this article for
notational simplicity. For more details about various tensor oper-
ators, interested readers may additionally refer to [De Lathauwer
et al. 2000; Smilde et al. 2004].

3.1 Basic Definitions

In this article, scalars are written as italic roman lowercase letters
(a, b, . . . ); vectors as boldface roman lowercase letters (a,b, . . . );

1Throughout this article, tensor approximation is particularly referred to as
the multiway analysis based on Tucker models [Smilde et al. 2004]. Readers
may notice that there is another popular multilinear model named parallel
factor analysis (PARAFAC) or canonical decomposition (CANDECOMP)
[Smilde et al. 2004] in chemometrics and psychometrics, but it is beyond
the scope of this article.

ACM Transactions on Graphics, Vol. 31, No. 3, Article 19, Publication date: May 2012.



4 • Y.-T. Tsai and Z.-C. Shih

matrices as boldface roman capitals (A,B, . . . ); tensors as bold-
face calligraphic capitals (A,B, . . . ). The entry in row i and col-
umn j of a matrix U ∈ RI×J is denoted by (U)ij ; similarly, the
entry of an N -th order tensor A ∈ RI1×I2×···×IN by (A)i1i2···iN .
The i-th row of U is written as (U)i∗ and the j-th column of U as
(U)∗j . The transpose of a matrix U is denoted by UT .

The Frobenius norm of an N -th order tensor A is defined as
‖A‖F =

√
〈A,A〉, where

〈A,B〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

(A)i1i2 ···iN (B)i1i2···iN (1)

denotes the scalar product of two tensors A,B ∈ RI1×I2×···×IN .
The mode-n product of a tensor A and a matrix U ∈ RJn×In is
written as B = A×n U, where the entries of the resulting tensor
B ∈ RI1×I2×···×In−1×Jn×In+1×···×IN are given by

(B)i1i2···in−1jnin+1···iN =

In∑
in=1

(A)i1i2···in−1inin+1···iN (U)jnin .

(2)
The symbol ufn(A) ∈ RIn×(In+1In+2···IN I1I2···In−1) denotes the
mode-n unfolded matrix of an N -th order tensor A, which results
from retaining the n-th mode of A and flattening the others (refer
to Fig. 2.1 in [De Lathauwer et al. 2000]).

Moreover, we further define a series of mode-n products by

B = A
N

ą

n
n=1

Un = A×1 U1 ×2 U2 · · · ×N UN , (3)

and A〈ni〉 ∈ RI1×I2×···×In−1×1×In+1×In+2×···×IN represents the i-
th mode-n sub-tensor of a tensor A, whose entries are defined as(
A〈ni〉

)
i1i2···in−11 in+1in+2···iN

= (A)i1i2···in−1i in+1in+2···iN . (4)

3.2 Tensor Approximation

Given a set of reduced ranks
{
Rn ∈ {1, 2, . . . , In}

}N
n=1

, where
Rn is the mode-n reduced rank, tensor approximation decom-
poses an N -th order tensor A as a series of mode-n products of
a core tensor Z ∈ RR1×R2×···×RN and a set of N basis matri-
ces
{
Un ∈ RIn×Rn

}N
n=1

, so that the following constrained least-
squares optimization problem is resolved:

min
{Z,{Un}Nn=1}

∥∥∥∥A−Z
N

ą

n
n=1

Un

∥∥∥∥2
F

, subject to ∀n,UT
nUn = IRn ,

(5)

where IRn ∈ RRn×Rn represents the identity matrix of size
Rn×Rn, and Un is also known as the mode-n basis matrix.

N -SVD [De Lathauwer et al. 2000] derives a locally optimal so-
lution to (5) using an iterative alternating least-squares algorithm
that optimizes only one basis matrix at a time, while leaving other
basis matrices unchanged. At the n-th iteration, the mode-n basis
matrix Un is extracted by retaining the structures of the n-th mode
of A, projecting A onto the basis matrices of other modes, and ap-
plying SVD to the mode-n unfolded matrix of the projected tensor.
The preceding steps are then repeated until convergence.

3.3 Clustered Tensor Approximation

For an N -th order tensor A, CTA [Tsai and Shih 2006] partitions{
A〈mi〉

}Im
i=1

, along the clustered mode m, into C disjoint regions

to reduce the run-time reconstruction costs of real-time applica-
tions. All the mode-m sub-tensors within a cluster c then can be
concatenated along the m-th mode into a new tensor and approx-
imated using N -SVD to minimize reconstruction errors from the
decomposed core tensor Zc ∈ RR1×R2×···×RN and N basis matri-
ces
{
Un,c ∈ RIn×Rn

}N
n=1

of cluster c.
To obtain a locally optimal solution, the dual mode-m basis ma-

trices
{
Vm,c

}C
c=1

are derived from the core tensor of each cluster
to iteratively re-classify A〈mi〉 into a cluster ci that minimizes the
approximation error of A〈mi〉. This is equivalent to maximizing the
following objective function2:∥∥∥∥ufm(A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci

)
VT

m,ci

∥∥∥∥2
F

, (6)

and the dual mode-m basis matrix of a cluster c is defined as

Vm,c =
(
ufm
(
Zc

)
ufm
(
Zc

)T)− 1
2
ufm
(
Zc

)
. (7)

In this way, CTA groups correlated mode-m sub-tensors, so that
tensor approximation can exploit more coherence within a cluster.

4. K-CLUSTERED TENSOR APPROXIMATION

4.1 Algorithm Overview

4.1.1 Motivations. One major drawback of CTA is that it en-
forces hard clustering in which each mode-m sub-tensor is clas-
sified into just one cluster. The subsequent tensor approximation
within each cluster thus can only exploit intra-cluster coherence. In
addition, the results of CTA heavily depend on the initial guess of
cluster membership, but estimating an appropriate initial guess is
a nontrivial problem. Even if the globally optimal solution to hard
clustering could be easily found, the decomposed core tensors and
basis matrices of different clusters may still have strong correla-
tions.

Our solution to this issue is to relax the hard clustering constraint
into a soft one. Each mode-m sub-tensor now can be classified into
more than one cluster and approximated by mixing the decom-
posed results of these clusters. To reduce run-time reconstruction
costs, this soft constraint should also be a sparse one in which each
mode-m sub-tensor belongs to just a few, say Km, clusters. This
not only permits K-CTA to exploit the inter-cluster coherence that
cannot be analyzed by CTA, but also alleviates the influence of an
inappropriate initial guess by breaking the hard cluster boundaries.
Thus, K-CTA can be regarded as a sparse extension of CTA and a
multilinear generalization of K-SVD [Aharon et al. 2006].

4.1.2 Mathematical Formulation. To allow soft and sparse
clustering, K-CTA is formulated as the following constrained least-
squares optimization problem:

min{
Zc,{Un,c}Nn=1

}C

c=1

∥∥∥∥A− C∑
c=1

(
Zc

N
ą

n
n=1

Un,c

)∥∥∥∥2
F

,

subject to


∀i,

∑C
c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0
= KmRm,

∀c, ∀i,
∥∥∥(Um,c

)
i∗

∥∥∥
0
∈ {0, Rm},

∀c, ∀n, UT
n,cUn,c = IRn ,

(8)

2Note that Eq. (6) is not derived in [Tsai and Shih 2006], but we will show
and prove it in Theorem 1 and Appendix A.1.
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Algorithm 1: The K-CTA algorithm.

Input: An N -th order tensor A, a set of reduced ranks {Rn}Nn=1, the
number of clusters C for the clustered mode m, the number of
mixture clusters Km, and the initial guess for{
Zc, {Un,c}Nn=1

}C

c=1
.

Output: The core tensor and basis matrices of each cluster{
Zc, {Un,c}Nn=1

}C

c=1
.

repeat
// Clustering stage
for c← 1 to C do

Compute Vm,c by (7)
Initialize each entry of Um,c to zero

for i← 1 to Im do // Greedy search
Obtain ci1 of A〈mi〉 by solving (9)
Update

(
Um,ci1

)
i∗ as (11)

for k ← 2 to Km do
Obtain cik of A〈mi〉 by solving (13)

Update
{(

Um,cij

)
i∗

}k

j=1
as (15) // Optimal projection

for c← 1 to C do // Post-processing
Decompose Um,c to obtain U′m,c and Wc (Section 4.2.3)
Um,c ←U′m,c

Zc ← Zc ×mWc

// Update stage
for c← 1 to C do

Compute Rc as (20)
R′c ←Rc ×m MT

c // Refer to (21) and (22) for Mc

Update Zc and {Un,c}Nn=1 by decomposing R′c using
N -SVD
Um,c ←McUm,c

until
∑C

c=1

∥∥Zc

∥∥
F

converges

where C is the total number of clusters for the clustered mode m,
Rn specifies the mode-n reduced rank, Zc ∈ RR1×R2×···×RN and
Un,c ∈ RIn×Rn , respectively, denote the decomposed core tensor
and the mode-n basis matrix of cluster c, Km represents the num-
ber of mixture clusters of each mode-m sub-tensor, and ‖·‖0 de-
notes the `0 norm of a vector. Note that Um,c is also called the
mixing matrix of cluster c, whose i-th row contains the mixing co-
efficients of the i-th mode-m sub-tensor, namely A〈mi〉, with re-
spect to cluster c.

The first and second constraints in (8) enforce that each mode-m
sub-tensor belongs to exact Km mixture clusters, and the entries of
the i-th row of Um,c must be all zeros if A〈mi〉 is not classified
into cluster c. Therefore, all the mode-m basis matrices are sparse
and implicitly specify the cluster membership of each mode-m sub-
tensor. Note that when Km = 1, K-CTA should derive the same
results as CTA to permit it as a natural generalization of CTA.

4.1.3 Solution Outline. The proposed iterative K-CTA algo-
rithm is an alternating least-squares approach that consists of two
stages: clustering and update stages. After initializing the core ten-
sor and basis matrices of each cluster, all variables in (8) are fixed
in the clustering stage (Section 4.2), except for the mode-m basis
matrix of each cluster. For each mode-m sub-tensor, a greedy ap-
proach is then applied to sequentially search for the best Km mix-
ture clusters that minimize its approximation error, and the mix-
ing coefficients are obtained by the proposed optimal projection
method. Next, in the update stage (Section 4.3), the core tensor

and basis matrices of each cluster are then iteratively updated using
N -SVD, one cluster at a time, while those of other clusters are un-
changed. Note that we also fix the cluster membership in the update
stage to simplify the proposed algorithm. Finally, the aforesaid two
stages are iteratively executed until the sum of the Frobenius norm
of each cluster core tensor converges, or a user-specified maximum
iteration count is reached. The whole process of K-CTA is summa-
rized in Algorithm 1.

4.2 The Clustering Stage

Given the core tensor and basis matrices of each cluster, we would
like to find the best Km mixture clusters of each mode-m sub-
tensor and derive the corresponding mixing coefficients in this
stage, so that the constraints in (8) are satisfied. This issue can be
considered as a multilinear counterpart of the pursuit problem for
sparse representation [Aharon et al. 2006; Chen et al. 2001; Mallat
and Zhang 1993], which was proved NP-hard [Davis et al. 1997].
Indeed, it is difficult to solve the cluster membership and the non-
zero mixing coefficients of a mode-m sub-tensor at the same time,
since the decomposed results of different clusters are frequently
correlated. Even a single change in the membership of a mode-m
sub-tensor, either adding the sub-tensor to or removing it from a
cluster, will affect its mixing coefficients for other clusters. Never-
theless, greedy approaches often provide a satisfactory approximate
solution to the pursuit problem in both theory and practice [Davis
et al. 1997]. We thus sequentially update the cluster membership
and sparse mixing coefficients of all the mode-m sub-tensors, one
cluster at a time.

4.2.1 Greedy Search.

First Mixture Cluster. To allow K-CTA as a natural generaliza-
tion of CTA, the first mixture cluster of a mode-m sub-tensor is
obtained by the following theorem and lemma:

THEOREM 1. Let Vm,c ∈ RRm×(Rm+1Rm+2···RNR1R2···Rm−1)

be the dual mode-m basis matrix of cluster c [Tsai and Shih 2006].
The first mixture cluster ci1 of A〈mi〉 can be obtained by solving
the following constrained integer optimization problem:

max
ci1

∥∥∥∥ufm(A(ci1 )

〈mi〉

)
VT

m,ci1

∥∥∥∥2
F

, subject to ci1 ∈ {1, 2, . . . , C} , (9)

where

A(ci1 )

〈mi〉
= A〈mi〉

N
ą

n
n=1
n 6=m

UT
n,ci1

. (10)

LEMMA 2. The mixing coefficients for the first mixture cluster
ci1 of A〈mi〉 are computed as(

Um,ci1

)
i∗ = ufm

(
A(ci1 )

〈mi〉

)
ufm(Zci1

)+, (11)

where the superscript ”+” specifies the Moore-Penrose pseudo-
inverse.

The mathematical proofs of Theorem 1 and Lemma 2 are pre-
sented in Appendix A.1. Theorem 1 states that A〈mi〉 should be
classified into a cluster whose basis matrices adequately preserve
its projected norm, so that the mode-m sub-tensors within a clus-
ter are correlated with each other. Lemma 2 further indicates that
the mixing coefficients for the first mixture cluster of A〈mi〉 is the
projection coefficients of A〈mi〉 onto the sub-spaces of cluster ci1 .
Note that the objective function in (9) is equivalent to the objective
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function of CTA in (6). This implies that if the number of mixture
cluster is set to one, K-CTA will be identical to CTA in the cluster-
ing stage.

Remaining Mixture Clusters. After resolving the first mixture
cluster of a mode-m sub-tensor, its remaining mixture clusters are
then iteratively derived, one mixture cluster at each iteration, from
the results of previous iteration. We thus propose the following the-
orem to settle the k-th mixture cluster of a mode-m sub-tensor:

THEOREM 3. The k-th mixture cluster cik of A〈mi〉 is resolved
from the mixing coefficients for the previously selected k − 1 mix-
ture clusters ci1 , ci2 , . . . , cik−1 by minimizing the approximation
error of the residual sub-tensor

R(k)

〈mi〉
= A〈mi〉−

k−1∑
j=1

(
Zcij
×m

(
Um,cij

)
i∗

N
ą

n
n=1
n6=m

Un,cij

)
, (12)

which is equivalent to solving the following constrained integer op-
timization problem:

max
cik

∥∥∥∥ufm(A(cik
)

〈mi〉

)
VT

m,cik

−
k−1∑
j=1

ufm

(
Z(cik

)
cij
×m

(
Um,cij

)
i∗

)
VT

m,cik

∥∥∥∥2
F

,

subject to cik ∈ {1, 2, . . . , C} , cik /∈
{
ci1 , ci2 , . . . , cik−1

}
,

(13)

where

Z(cik
)

cij
= Zcij

N
ą

n
n=1
n 6=m

UT
n,cik

Un,cij
. (14)

The mathematical proof of Theorem 3 can be found in Appendix
A.2. For each mode-m sub-tensor, the first term of the objective
function in (13) is actually the same as the objective function in
(9), and the second term instead penalizes a cluster whose basis
matrices are correlated to those of previously selected mixture clus-
ters. Therefore, Theorem 3 implies that the k-th mixture cluster of a
mode-m sub-tensor is determined by maximizing intra-cluster cor-
relations and minimizing inter-cluster correlations at the same time.
This interesting result is similar to the optimized orthogonal match-
ing pursuit approach [Rebollo-Neira and Lowe 2002], where the k-
th atom is resolved by simultaneously minimizing its linear depen-
dence with previously selected atoms and maximizing the projected
norm of the residual.

Moreover, it is obvious that Eq. (13) can be computed in the re-
duced tensor space3 to significantly decrease computational costs.
The first term of the objective function in (13) is the projection co-
efficients of A〈mi〉 onto the basis matrices and the dual mode-m
basis matrix of cluster cik . It should be already computed when re-
solving the first mixture cluster of A〈mi〉 and remains unchanged
during the whole clustering stage. The second term instead can be
interpreted as transforming the projected A〈mi〉 in the sub-spaces
of cluster cij , for j = 1, 2, . . . , k − 1, to the sub-spaces of cluster
cik , followed by the multiplication with VT

m,cik
to obtain projec-

tion coefficients. As a result, we can avoid computing the resid-
ual sub-tensor in the original tensor space, which needs to first re-

3In this article, the reduced tensor space is referred to as the union of all
decomposed cluster sub-spaces, whose dimensionality is frequently much
lower than the original tensor space.

construct the corresponding mode-m sub-tensor from the results of
previous iteration.

4.2.2 Optimal Projection. Since the sub-spaces of different
clusters may be correlated, each time when assigning a new mix-
ture cluster to a mode-m sub-tensor, its mixing coefficients for pre-
viously selected mixture clusters should be updated to account for
the change in the cluster membership. This guarantees an optimal
projection of the mode-m sub-tensor onto the sub-spaces of all se-
lected mixture clusters. We therefore introduce the following theo-
rem to update the mixing coefficients of a mode-m sub-tensor:

THEOREM 4. The mixing coefficients for the k selected mixture
clusters ci1 , ci2 , . . . , cik of the i-th mode-m sub-tensor A〈mi〉 are
given by

u(k)
mi

= Z(k)+

mi
a(k)
mi

, (15)

where

u(k)
mi

=
[(
Um,ci1

)
i∗ · · ·

(
Um,cik

)
i∗

]T
, (16)

Z(k)
mi

=


f
(ci1 )
m

(
Z(ci1 )

ci1

)
· · · f

(cik
)

m

(
Z(cik

)
ci1

)
...

. . .
...

f
(ci1 )
m

(
Z(ci1 )

cik

)
· · · f

(cik
)

m

(
Z(cik

)
cik

)
 , (17)

a(k)
mi

=
[
f
(ci1 )
m

(
A(ci1 )

〈mi〉

)
· · · f

(cik
)

m

(
A(cik

)

〈mi〉

)]T
, (18)

and f
(c)
m (·) is the unfolded core projection function of a tensor,

which is defined as

f (c)m (·) = ufm(·)ufm
(
Zc

)T
. (19)

Appendix B gives the mathematical proof of Theorem 4. Inter-
estingly, Eq. (15) resembles the least-squares solution to the pro-
jection coefficients of an observation onto a set of basis vectors,
where Z

(k)
mi can be regarded as the Gram matrix that accounts for

the correlations between all available cluster sub-spaces. Note that
the proposed K-CTA algorithm is indeed efficient, since Km is usu-
ally a small positive integer. Moreover, all of the operations during
the clustering stage are performed in the reduced tensor space, and
most of them only need to be computed once at the beginning of
this stage.

4.2.3 Post-Processing. Note that the mode-m basis matrices
derived by optimal projection are not column-orthonormal. To sat-
isfy the orthonormal constraints on basis matrices in (8), we addi-
tionally decompose the mode-m basis matrix of each cluster using
SVD to obtain Um,c = U′m,cWc, where U′m,c ∈ RIm×Rm is a
basis matrix whose columns are the orthonormal left singular vec-
tors of Um,c, and each column of Wc ∈ RRm×Rm , respectively,
contains the projection coefficients of each column of Um,c onto
U′m,c. After that, we replace the mode-m basis matrix of cluster c
with U′m,c and re-compute the core tensor of cluster c by the mode-
m product Zc×mWc, so that the value of the objective function in
(8) is unchanged.

4.3 The Update Stage

In this stage, the core tensor and basis matrices of each cluster are
updated from the results of the clustering stage. While this prob-
lem for CTA can be easily solved by simultaneously applying ten-
sor approximation to the member sub-tensors of each cluster [Tsai
and Shih 2006], sub-space learning for all clusters at the same time
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would be difficult for K-CTA, since each mode-m sub-tensor now
belongs to Km different clusters that may be correlated with each
other. We thus alternately decompose one cluster at a time by ten-
sor approximation, while fixing the results of other clusters. To
simplify the proposed algorithm, the cluster membership of each
mode-m sub-tensor is not altered in this stage, leaving it to be up-
dated only in the clustering stage.

At the c-th iteration, Zc and {Un,c}Nn=1 of cluster c are allowed
to change, while those of other clusters are fixed. The objective
function in (8) thus can be rewritten as∥∥∥∥Rc −Zc

N
ą

n
n=1

Un,c

∥∥∥∥2
F

, Rc = A−
C∑

j=1
j 6=c

(
Zj

N
ą

n
n=1

Un,j

)
, (20)

where Rc is the residual tensor at the c-th iteration. By compar-
ing (20) to (4.1) and (4.2) in [De Lathauwer et al. 2000], we know
that the minimization of (20) can be solved with the aid of tensor
decomposition. To enforce the sparse constraint on Um,c, the key
idea is to only include member sub-tensors of cluster c in the ten-
sor decomposition process and just update the non-zero entries of
Um,c, which is based on the same concept in the codebook update
stage of K-SVD [Aharon et al. 2006]. As a result, the membership
of cluster c is fixed, and the zero entries of Um,c remain zeros.
However, the non-zero entries of Um,c are allowed to change with
the decomposed results of cluster c at the same time.

More formally, let Mc be the membership index set of cluster c
defined as

Mc =
{
i ∈ {1, 2, . . . , Im} | A〈mi〉 is a member of cluster c

}
,

(21)
and Mc ∈ RIm×|Mc| denotes the membership matrix of cluster c,
whose entries are

∀i1, ∀i2,
(
Mc

)
i1i2

=

{
1, if i1 = (Mc)i2 ,

0, otherwise,
(22)

where | · | denotes the cardinality of a set, and (Mc)i2 is the i2-
th element of Mc. We thus can extract the member sub-tensors
of cluster c into an N -th order tensor R′

c by R′
c = Rc ×m MT

c .
When applying tensor approximation to the shrunken tensor R′

c,
non-members of cluster c are excluded from the decomposition.
Zc and

{
Un,c

}N
n=1

are then updated by the decomposed core ten-
sor and basis matrices of R′

c. Note that since R′
c contains only

members of cluster c, Um,c should be further updated by the mul-
tiplication McUm,c to satisfy the constraints in (8).

5. IMPLEMENTATION ISSUES

In this section, we discuss some practical issues of K-CTA, such as
the initial guess of the core tensor and basis matrices of each cluster
(Section 5.1), the extraction of global basis matrices of all clusters
(Section 5.2), and the degeneracy and convergence problems of K-
CTA (Section 5.3).

5.1 Initial Guess

One practical issue of K-CTA is the initial guess of the core tensor
and basis matrices of each cluster. A simple and heuristic method
is to employ the decomposed results of hard clustering. We can
execute CTA for just one iteration to obtain the initial core tensor
and basis matrices of each cluster for further data analysis using
K-CTA. Although this scheme will push the problem back to the

initial seeds for clustering methods, various techniques for generat-
ing and fixing the initial cluster seeds usually provide satisfactory
results in our experience.

The best approach may vary with the given data sets, but here
we present a general method as a guideline to determine the initial
cluster seeds. For a real-world data set, each mode of the input ten-
sor is associated with a parametric space that describes its physical
conditions, for example different illumination or view directions for
a reflectance function. Based on the assumption that observations
from nearby parameters in the mode-m parametric space are ex-
pected to be highly correlated, we can perform initial clustering in
the parametric space instead. This is computationally efficient since
the dimensionality of the mode-m parametric space is frequently
lower than that of observations. Sophisticated or even exhaustive
methods therefore can be employed to generate appropriate cluster
seeds. In our experiments, this scheme generally reduces the final
approximation errors of K-CTA by 2% ∼ 5%, when compared with
directly performing K-means clustering on mode-m sub-tensors to
determine the initial cluster seeds for CTA.

Interestingly, while finding a favorable initial guess is a signif-
icant issue for CTA and other iterative algorithms, K-CTA is less
sensitive to the quality of an initial solution. As the number of
mixture clusters increases, the importance of an appropriate initial
guess for K-CTA decreases. This result is not surprising since the
impact of inappropriate initial cluster membership can be compen-
sated by additional mixture clusters. The compensation also can
be regarded as an optimal interpolation scheme from other clus-
ter sub-spaces in the least-squares sense, which particularly allows
smooth transitions across different physical conditions in practical
applications. In Section 6.3, we will further demonstrate the influ-
ence of this characteristic of K-CTA in the experimental results of
all-frequency BRT.

5.2 Global Basis Matrices

Sometimes a single global mode-n basis matrix of all clusters is
preferred rather than an individual local mode-n basis matrix of
each cluster. The preference for global basis matrices may be due to
computational costs, storage space, or some special purposes of an
application. To account for this issue, the global basis matrices are
computed by decomposing an N -th order tensor A before applying
K-CTA.

Let G be the index set of global basis matrices
{
Un

}
n∈G, where

the subscript c of a local mode-n basis matrix is omitted to denote a
global one. After extracting

{
Un

}
n∈G by applying tensor approxi-

mation to A, we project A onto
{
Un

}
n∈G to obtain an N -th order

reduced tensor AG as

AG = A
ą

n
n∈G

UT
n . (23)

K-CTA is then performed on AG to compute the core tensor and
the local basis matrices of each cluster, while the global basis ma-
trices are fixed.

Although an iterative algorithm can be employed to alternately
update the global basis matrices and the decomposed results of K-
CTA, it is computationally too expensive and only reduces approx-
imation errors by a small amount. We therefore just performed the
initial tensor decomposition on A to derive the global basis ma-
trices and did not update them after K-CTA for all experimental
results in this article.
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5.3 Degeneracy and Convergence

When the total number of clusters is large, we have observed that
sometimes all the entries in a column of the mode-m basis matrix
of a cluster, for example Um,c, may become zeros at the end of
the clustering stage, which implies that no mode-m sub-tensors are
classified into cluster c. Although this degeneracy problem does not
occur frequently in practice, an empty cluster actually consumes
memory space without any contributions to final approximation er-
rors. In the worst case, K-CTA may even derive a poor solution
when there are too many empty clusters, as if the total number of
clusters were set to a lower value. Our solution to this issue is to
split the cluster with the largest total sum of approximation errors in
half by sorting the approximation error of each mode-m sub-tensor
within this cluster. If there is more than one empty cluster, we can
sequentially split non-empty clusters using the preceding method
until each empty cluster has been assigned at least one mode-m
sub-tensor. It should be noted that our approach is in fact related
to the key concept of teleportation [Cohen-Steiner et al. 2004] and
enhanced LBG [Patanè and Russo 2001] in the clustering literature.

Another important question is whether the proposed iterative
K-CTA algorithm always converges to a local optimum. Appar-
ently, the answer is no. Similar to K-SVD [Aharon et al. 2006], the
convergence of K-CTA is not guaranteed, since only the approxi-
mate mixing coefficients (and also the cluster membership) of each
mode-m sub-tensor are derived in the clustering stage. Therefore,
the total sum of approximation errors is not guaranteed to decrease
when compared to the decomposed results of the previous itera-
tion. Note that if the convergence and a locally optimal solution of
K-CTA are both required, one can instead perform the brute-force
search for a globally optimal solution to the pursuit problem, at the
cost of longer computation time.

Fortunately, although K-CTA theoretically does not always en-
sure convergence, we have found that it practically converges
within just a few iterations in the experiments. We currently have no
idea about how to efficiently update mixing coefficients and clus-
ter sub-spaces, so that approximation errors are always reduced.
However, a simple and intuitive technique can be applied to pre-
vent bad results due to the divergence problem. At the end of the
update stage, if the total sum of approximation errors increases, we
instead restore the decomposed results of previous iteration. As a
result, the approximation errors of an input tensor will never in-
crease, and the convergence criterion of K-CTA in Algorithm 1 can
be always reached.

6. APPLICATIONS AND RESULTS

Three applications of the proposed K-CTA algorithm are presented
in this section, including the compression of BTFs4 (Section 6.1),
VOTFs5 (Section 6.2), and all-frequency BRT data (Section 6.3).
Our experiments demonstrate that K-CTA is effective and promis-
ing when compared to previous tensor-based methods: N -SVD and
CTA. The experiments and simulation timings in this article were
conducted and measured on a workstation with an Intel i7-980X

4In this article, the measured BTFs, including Corduroy, Sponge, and Wool,
were provided in courtesy of Koudelka et al. [2003] and Sattler et al. [2003],
whereas the BTF of each simulated material, such as Fiber or RoughHole,
was obtained by rendering a geometric surface using global illumination
techniques.
5The VOTF of a simulated material can be precomputed over a geometric
surface by using ray-tracing algorithms for visibility test.

Extreme CPU, an NVIDIA GeForce GTX 480 graphics card, and
12GB main memory.

In our experiments, the reduced ranks of each mode are con-
strained to be multiples of 4 for all tensor-based algorithms,
since this can maximize the efficiency of run-time texture filter-
ing/fetching on GPUs. For N -SVD, the reduced ranks of each
mode are separately obtained by decomposing only the basis ma-
trix of one mode, say the mode n, while fixing other basis matrices
to identity ones, and incrementally adding the value of Rn until an
approximation threshold is reached.

For CTA and K-CTA, we simply let Rm = 4 for the clustered
mode m, and select the reduced ranks of other modes as those for
N -SVD. Moreover, the total number of clusters C can be deter-
mined from the mode-m reduced rank for N -SVD. We have found
that when RmC is equal to the mode-m reduced rank for N -SVD,
the signal-to-error ratios of the three tensor-based representations
are roughly similar to each other. As for the number of mixture
clusters Km, it usually can be a very small integer (typically 2 or
3 from our experimental results, especially from Table I and Fig.
5). A larger value of Km, for example 4, can slightly increase the
signal-to-error ratios by a factor of less than 1%, but may substan-
tially reduce the rendering rates by a factor of more than 20%.

6.1 Bidirectional Texture Functions

BTFs [Dana et al. 1999] generalized BRDFs to contain textural pat-
terns of real-world object surfaces. They capture spatially varying
surface appearance and reflectance that change with respect to the
illumination and view directions. A BTF is thus a 6D function of
the illumination direction ωl, the view direction ωv , and the 2D
spatial coordinates, x and y, of a texel t. Although the illumination
effects of real-world object surfaces can be faithfully captured with
BTFs, we usually have to tabulate several gigabytes of raw data
for a single BTF data set. This is certainly impractical for photo-
realistic image synthesis in real-time rendering applications.

Various approximation algorithms have been employed to solve
this problem [Filip and Haindl 2009], including matrix factoriza-
tion [Koudelka et al. 2003; Sattler et al. 2003; Suykens et al. 2003],
non-linear dimensionality reduction methods [Müller et al. 2003;
2004], parametric models [McAllister et al. 2002; Tsai et al. 2011],
to name a few. Recently, tensor-based methods have been widely
applied to BTF compression [Vasilescu and Terzopoulos 2004;
Wang et al. 2005; Wu et al. 2008]. We thus take a step further to
conduct experiments of K-CTA on different BTFs for comparison.

In our experiments, a BTF is organized as a fourth order tensor
A(B)∈ RIωl

×Iωv×Ix×Iy to retain its intrinsic structures, where Iωl

and Iωv denote the numbers of sampled illumination and view di-
rections, and Ix as well as Iy specify the spatially horizontal and
vertical resolutions. Given the reduced ranks of each mode, namely
R

(B)
ωl , R(B)

ωv , R(B)
x , and R

(B)
y , K-CTA is then applied to A(B) with

total C(B) clusters for the view mode, K(B)
ωv mixture clusters for a

mode-ωv sub-tensor, and a single global basis matrix for the illu-
mination mode. A(B) is thus approximated by

A(B) ≈
C(B)∑
c=1

(
Z(B)

c ×ωl
U(B)

ωl
×ωv U(B)

ωv,c
×x U(B)

x,c ×y U(B)
y,c

)
,

(24)

where Z(B)
c ∈ RR

(B)
ωl
×R(B)

ωv ×R
(B)
x ×R(B)

y denotes the core tensor of

cluster c, U(B)
ωl ∈ RIωl

×R(B)
ωl represents the global mode-ωl basis

matrix of all clusters, and U
(B)
ωv,c∈ RIωv×R

(B)
ωv , U(B)

x,c ∈ RIx×R
(B)
x ,
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Table I. Statistics and timing measurements of different tensor approximation algorithms for BTFs and VOTFs, including N -SVD, CTA, and
K-CTA. All decomposed data were stored as half-precision (16-bit) floating point numbers. For BTFs, the quality of compressed data is

measured by the signal-to-error ratio (S/E ratio) in dB. As for VOTFs, we list the total number of error texels for the two representations: (B)
binary visibility masks; (S) signed-distance functions.

Material Corduroy Fiber RoughHole Sponge Wool

Iωl
× Iωv × Ix × Iy 81×81×128×128 100×100×96×96 100×100×96×96 120×90×128×128 81×81×128×128

Raw data (GB) 1.2 1.03 1.03 1.98 1.2

Algorithm N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA

R
(B)
ωl
×R

(B)
ωv 20×32 20×4 20×4 16×80 16×4 16×4 28×44 28×4 28×4 16×20 16×4 16×4 20×28 20×4 20×4

R
(B)
x ×R

(B)
y 80×80 80×80 80×80 64×64 64×64 64×64 96×96 96×96 96×96 80×80 80×80 80×80 64×64 64×64 64×64

C(B) 1 8 8 1 20 20 1 11 11 1 5 5 1 7 7

K
(B)
ωv 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3

R
(O)
ωv - - - 80 4 4 44 4 4 - - - - - -

R
(O)
x ×R

(O)
y - - - 80×80 80×80 80×80 80×80 80×80 80×80 - - - - - -

C(O) - - - 1 20 20 1 11 11 - - - - - -

K
(O)
ωv - - - 1 1 3 1 1 3 - - - - - -

Compressed data (MB) 7.87 8.13 8.14 11.07 12.06 12.09 22.26 22.54 22.56 3.96 4.11 4.11 4.42 4.6 4.6

BTF S/E ratio (dB) 19.38 18.2 19.09 17.34 16.45 17.29 14.77 12.71 14.54 24.32 23.55 24.23 20.7 19.76 20.52

VOTF error texels (B) - - - 732 2222 1046 572 1938 1029 - - - - - -

VOTF error texels (S) - - - 71 2027 291 325 969 597 - - - - - -

Compression time (min.) 19.5 30.43 54.25 8.58 15.14 30.86 2.45 8.61 11.74 13.37 17.61 18.14 8.23 8.86 12.66

and U
(B)
y,c ∈ RIy×R

(B)
y are, respectively, the mode-ωv , mode-x, and

mode-y basis matrices of cluster c.
The configurations of K-CTA for BTF compression are deter-

mined for the following reasons:

(1) Efficient texture filtering techniques on GPUs can be directly
utilized by not clustering the x and y modes.

(2) For a complex BTF, a high mode-ωv reduced rank is usually
required to model large view-dependent variations in the ap-
pearance data, which substantially increases run-time render-
ing costs on GPUs. Clustering along the view mode allows us
to reduce the costs in an adjustable manner.

(3) In our experience, the mode-ωv reduced rank often dominates
the perceptual quality of reconstructed BTFs and may need to
be much higher than the mode-ωl reduced rank.

According to the reconstructed results in previous articles
[Vasilescu and Terzopoulos 2004; Wang et al. 2005], we identify
that if the mode-ωv reduced rank is too low to capture the view vari-
ations in a BTF, the reconstructed images will become over-blurred
or have strong ringing effects. Human eyes seem to be more sen-
sitive to these artifacts than unrealistic illumination effects. There-
fore, clustering along the view mode will reduce the performance
penalty when we need a high mode-ωv reduced rank.

In Fig. 3, we present the reconstructed BTFs of different tensor
approximation algorithms, including N -SVD, CTA, and K-CTA,
whose statistics and timing measurements are further compared
in Table I. Fig. 5(a) also plots the signal-to-error ratio versus the
mode-ωv reduced rank for the three multilinear models with vari-
ous configurations. Note that we compare them based on the same
total number of mode-ωv reduced rank, which leads to similar stor-
age space. It can be shown that K-CTA achieves compression ratios
and image quality comparable to N -SVD, while having lower ap-
proximation errors than CTA with ignorable storage overhead. For
CTA, note that the view mode is also partitioned into total C(B)

clusters, and a single global mode-ωl basis matrix is extracted for

all clusters. We have found that although extracting the global basis
matrix may slightly increase approximation errors, it can signifi-
cantly reduce both off-line and run-time costs in some applications
(Section 6.3).

6.2 View-Dependent Occlusion Texture Functions

Apart from BTFs, various appearance models have also been de-
veloped to render shadows and complex illumination effects from
precomputed meso-scale data or special fields, such as visibility
information [Heidrich et al. 2000], view-dependent displacement
mapping [Wang et al. 2003], shell texture functions [Chen et al.
2004], and relief mapping [Policarpo et al. 2005]. In this article,
we propose a spatially varying appearance model, namely VOTFs,
to visualize complex micro-geometry of object surfaces. A VOTF
is a set of 2D textures in which each texture contains spatially vary-
ing meso-scale occlusions from a sampled view direction. It is a 4D
function of the view direction ωv and the 2D spatial coordinates, x
and y, of a texel t. Thus, VOTFs can be employed to enhance the
surface appearance of objects with shape details and silhouettes.
Examples of a VOTF are shown in Fig. 6(b).

Besides conventional binary visibility masks, we represent a
VOTF with a set of 2D signed-distance textures. Signed-distance
functions [Danielsson 1980] have been shown to successfully pre-
serve sharp features in vector textures [Qin et al. 2006] and image
structures for texture synthesis [Lefebvre and Hoppe 2006]. Re-
cently, they were also applied to the approximation of visibility
integrals for PRT [Xu et al. 2008], further showing their poten-
tials for modeling occlusion information. According to our exper-
iments, the advantages of signed-distance functions still hold even
after compression with tensor approximation algorithms. The intu-
itive explanation for this outcome is that sharp boundaries in the bi-
nary visibility masks are in fact high-frequency signals. Converting
them into signed-distance functions instead produces smooth and
continuous signals that would facilitate subsequent approximation.

ACM Transactions on Graphics, Vol. 31, No. 3, Article 19, Publication date: May 2012.
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(a) Fiber (b) RoughHole

(c) Sponge (d) Wool

Fig. 3. Reconstructed BTF images of different tensor approximation algorithms. In each sub-figure, from left to right: raw data; N -SVD; CTA; K-CTA, from
top to bottom: reconstructed images; absolute difference images (scaled by a factor of 3).

(a) Fiber (binary visibility masks) (b) RoughHole (binary visibility masks)

(c) Fiber (signed-distance functions) (d) RoughHole (signed-distance functions)

Fig. 4. Reconstructed VOTF images of different tensor approximation algorithms. In each sub-figure, from left to right: raw data; N -SVD; CTA; K-CTA,
from top to bottom: reconstructed images; absolute difference images (scaled by a factor of 10 for signed-distance functions).
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Representation

(a) BTF (b) VOTF (signed-distance functions) (c) VOTF comparison (K-CTA, K(O)
ωv =3)

Fig. 5. Comparisons of the approximation errors of different multilinear models and visibility representations for the material RoughHole. In (a) and (b),
the values in parentheses for K-CTA represent the number of mixture clusters, namely K

(B)
ωv or K

(O)
ωv . For all multilinear models, R(B)

x = R
(B)
y = 96

and R
(O)
x = R

(O)
y = 80. For CTA and K-CTA, the horizontal axis in each chart specifies various total mode-ωv reduced ranks whose values correspond to

R
(B)
ωv C(B) for the BTF and R

(O)
ωv C(O) for the VOTF, with R

(B)
ωv = R

(O)
ωv = 4 for each cluster.

(a) BTF data (b) VOTF data (c) VOTF data
(binary visibility masks) (signed-distance functions)

Fig. 6. Examples of the simulated material Fiber. For the VOTF, each im-
age records visibility information from a sampled view direction. The val-
ues of signed-distance functions were normalized into the interval [−1,+1].

Fig. 6(c) shows examples of a VOTF in the signed-distance repre-
sentation.

Therefore, a VOTF is first converted into signed-distance-to-
boundary textures from binary visibility masks, one texture for
each view direction. For a given texel t in the binary mask of
a view direction, we compute its nearest distance to the bound-
aries. A positive distance is stored if the value of texel t in
the binary mask is equal to 0 (occluded). Otherwise, a negative
distance is adopted. The transformed VOTF is then normalized
into the interval [−1,+1] and organized as a third order tensor
A(O)∈ RIωv×Ix×Iy .

Given the reduced ranks of each mode, namely R
(O)
ωv , R(O)

x ,
and R

(O)
y , K-CTA is then applied to A(O) with total C(O) clus-

ters for the view mode and K
(O)
ωv mixture clusters for a mode-ωv

sub-tensor. A(O) is thus approximated by

A(O) ≈
C(O)∑
c=1

(
Z(O)

c ×ωv U(O)
ωv,c
×x U(O)

x,c ×y U(O)
y,c

)
, (25)

where Z(O)
c ∈ RR

(O)
ωv ×R

(O)
x ×R(O)

y is the core tensor of cluster c, and

U
(O)
ωv,c∈ RIωv×R

(O)
ωv , U

(O)
x,c ∈ RIx×R

(O)
x , and U

(O)
y,c ∈ RIy×R

(O)
y ,

respectively, specify the mode-ωv , mode-x, and mode-y basis ma-
trices of cluster c.

In Fig. 4, we show the reconstructed VOTF data of simulated
spatially varying meso-structures. Table I also compares the num-
ber of error texels after approximation using N -SVD, CTA, and
K-CTA. From Fig. 4 and Table I, K-CTA obviously outperforms
CTA in perceptual quality and the number of error texels, especially
for the VOTF of the material Fiber. Moveover, signed-distance
functions are significantly better than binary visibility masks in vi-

sual quality and approximation errors (the number of error texels)
for encoding VOTFs. After compression, signed-distance functions
tend to reconstruct more continuous signals and less noises at sil-
houette boundaries (see Fig. 7 and the accompanying video).

Fig. 5(b) plots the number of error texels versus the mode-ωv

reduced rank for the three multilinear models with various configu-
rations, when VOTFs are encoded in the signed-distance represen-
tation. Note that we compare the three models based on the same
total number of mode-ωv reduced rank, which leads to similar stor-
age space. Furthermore, Fig. 5(c) shows that signed-distance func-
tions begin to outperform binary visibility masks from a certain
cross point, for example 36. This implies that the high-frequency
signals in binary visibility masks significantly limit the approxi-
mation ability of tensor approximation algorithms. In practice, we
have found that a higher mode-ωv reduced rank than the value of
this cross point is frequently necessary to render high-quality im-
ages.

6.3 All-Frequency Bi-Scale Radiance Transfer

6.3.1 Overview. BRT [Sloan et al. 2003b] generalizes PRT
[Sloan et al. 2002] with spatially varying materials, which are
called radiance transfer textures, to improve image quality with
detailed surface appearance. The main concept of BRT is to sepa-
rate the light transport problem into macro-scale (coarsely-sampled
global illumination data) and meso-scale (spatially varying appear-
ance models) radiance transfer. Nevertheless, most previous BRT
algorithms are limited to low-frequency light transport and low-
quality surface appearance at the silhouettes. The radiance transfer
textures only model fine-scale lighting and shadowing effects, but
neither contain shape information nor actually modify the surface
geometry. Therefore, meso-scale shape details and shadow bound-
aries owing to complex meso-structures cannot be faithfully cap-
tured. Recently, Sun et al. [2011] proposed an all-frequency BRT
algorithm based on bi-clustering. Although their approach supports
high-frequency bi-scale lighting effects in real time, it only focuses
on compressing the macro-scale radiance transfer data. By con-
trast, the proposed method can accurately approximate the radiance
transfer data sets at both scales.

In our experiments, BTFs and VOTFs are combined for meso-
scale radiance transfer to model not only spatially varying illumina-
tion effects but also view-dependent occlusions at the meso-scale.
To obtain an accurate and compact representation, we first apply
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(a) Binary visibility (b) Signed-distance (c) Signed-distance
masks functions functions (anti-aliased)

Fig. 7. Comparison between different encoding schemes for VOTFs. In-
side triangle faces of the model are culled to clearly show the difference.
For binary visibility masks, the threshold T (O) and weight W (O) in (26)
were, respectively, set to 0.5 and 1. For signed-distance functions, T (O)

and W (O) were, respectively, set to 0.05 and 12.

tensor approximation algorithms to decompose BTFs and VOTFs
into a few low-order factors and the reduced multidimensional core
tensor(s). For VOTFs, view-dependent signed-distance functions
are recommended instead of binary visibility masks to preserve
sharp geometric features at the meso-scale

As for macro-scale radiance transfer, we modify the all-
frequency PRT framework [Tsai and Shih 2006] to precompute
BRT data for run-time rendering. Specifically, the light-dependent
functions in [Tsai and Shih 2006] are replaced with the extracted
mode-ωl basis matrix from tensor approximation algorithms. For
the BTF compressed using CTA or K-CTA, note that we derive only
a single global mode-ωl basis matrix of all clusters as in Section
6.1. This results in only one set of macro-scale BRT data, rather
than C(B) sets of BRT data when a local mode-ωl basis matrix
is extracted for each cluster. Both BRT computation and render-
ing costs thus can be significantly reduced. Then, the raw radiance
transfer matrices are computed at each object vertex, approximated
with a set of uniform SRBFs, and finally compressed using CTA6 to
exploit inter-vertex coherence. During BRT computation, we also
employ the meso-scale occlusion information in VOTFs to cast
shadows owing to complex meso-structures. More details can be
found in [Tsai 2009, Chapter 9.2].

6.3.2 Resampling. Due to the sparse sampling rates of the il-
lumination and view modes, it is necessary to resample the com-
pressed BTF data for efficient run-time rendering under novel illu-
mination and view conditions. Although N -SVD allows us to gen-
erate observations from a novel illumination direction by resam-
pling just the columns of the mode-ωl basis matrix, resampling the
view mode is complicated since CTA and K-CTA partition the view
mode into different regions in our experiments. For CTA, we em-
ploy traditional linear interpolation from nearby view directions to
solve this issue, whereas the proposed K-CTA algorithm implicitly
suggests a better resampling scheme.

For a compressed BTF based on K-CTA, we can resample the
view mode of the raw BTF first and employ the greedy search and
optimal projection in the clustering stage of K-CTA to compute the
mixing coefficients of each mode-ωv sub-tensor of the resampled
raw BTF. Thus, the overall effect is equivalent to resampling the
columns of the mode-ωv basis matrices, so that the BTF recon-
struction and interpolation are combined together without reducing
run-time performance. Although one can continue to update the
cluster sub-spaces of the compressed BTF and follow the process
of K-CTA on the resampled raw BTF until convergence, we do not

6One can instead apply the proposed K-CTA algorithm to compress the
macro-scale radiance transfer matrices, but for a reasonable computational
cost, we employ CTA in the current implementation.

Table II. Statistics and timing measurements of the proposed
all-frequency BRT algorithm. In the row MRT compression time, the

performance of compressing the macro-scale radiance transfer matrices is
shown. In the row Frames per second, we list the rendering performance
with/without visibility anti-aliasing when the viewpoint changes. For the

configurations of each meso-scale material, please refer to Table I.
Model Bunny BunnyPlane Cloth Teapot

Material(s) Sponge Fiber + Sponge Wool + Sponge RoughHole + Sponge

Vertices 36k 98k 55k 75k

SRBFs 642 2562 642 642

Raw data (GB) 40.11 108.35 69.23 123.26

Clusters 100 180 110 150

Compressed data (MB) 15.77 71.4 18.79 29.44

BRT computation time (hr) 1.78 16.41 4.95 7.21

MRT compression time (hr) 5.83 12.35 7.47 9.56

Frames per second (w/wo) -/147.42 71.58/93.27 -/81.22 52.29/66.74

recommend applying this time-consuming iterative scheme. More-
over, to accelerate the resampling of the raw BTF using sophisti-
cated methods, such as cubic or thin-plate spline interpolation in
the spherical domain, we perform N -SVD on the raw BTF without
approximation errors to obtain a full-rank mode-ωv basis matrix of
size Iωv× Iωv , and then resample columns of this matrix instead.

6.3.3 Rendering. The rendering process of all-frequency BRT
based on tensor approximation algorithms is rather straightforward.
To increase performance and employ texture filtering on GPUs, we
reconstruct the x and y modes of each (cluster) core tensor, create
their mipmaps, and then concatenate the results into one or more
2D texture arrays before rendering. The mode-ωl and mode-ωv

basis matrices are instead stored in 2D textures in the parabolic
parameterization [Heidrich and Seidel 1999]. For meso-structure
synthesis, the spatial coordinate texture S is obtained by using
appearance-space texture synthesis [Lefebvre and Hoppe 2006] on
the raw BTF/VOTF data. The run-time process on GPUs thus con-
sists of the following steps:

(1) Perform Steps 1–3 in the run-time process in [Tsai and Shih
2006] to obtain the per-vertex radiance transfer vector rp.

(2) In the pixel shader, sample the synthesized texture S for the
BTF/VOTF spatial coordinates tp of current pixel p.

(3) If the meso-structure of pixel p does not contain VOTF, set
pixel p as visible and go to Step 7. Otherwise, continue to ex-
ecute Step 4.

(4) The approximated VOTF value of pixel p, Ôp, is given by re-
constructing the view mode according to the employed tensor
approximation algorithm.

(5) A user-defined visibility mapping function, for example (26),
is then applied to map Ôp into a visibility value Ô′p within the
interval [0, 1]. Set pixel p to visible if Ô′p > 0.

(6) If pixel p is visible, compute its shading color by Step 7. Oth-
erwise, discard it.

(7) Sample the texture of the mode-ωv basis matrix for all the com-
ponents of current novel view direction. The shading color of
pixel p is then given by the dot product of the sampled results
and rp.

The main purpose of the visibility mapping function in Step 5
is to determine final visibility values and avoid the aliasing prob-
lem that results from meso-scale visibility. It should be designed
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(a) Bunny (147.42 FPS) (b) Cloth (81.22 FPS) (c) Teapot (52.29 FPS)

Fig. 8. Rendered results of the all-frequency BRT algorithm. The configurations of macro-scale and meso-scale radiance transfer are listed in Tables I and II.
The model Bunny was provided in courtesy of Stanford Computer Graphics Laboratory [2011].

(a) Rendered image (K-CTA) (b) Raw data (<0.01 FPS) (c) STD (21.09 dB, 42.35 FPS) (d) STD (24.26 dB, 2.91 FPS) (e) K-CTA (24.23 dB, 168.47 FPS)
k1 = 4, k2 = 4 k1 = 8, k2 = 32

Fig. 9. Comparisons of reconstructed BTF images (top) and rendered results (bottom) between STD [Ruiters and Klein 2009] and K-CTA. The signal-to-error
ratio and rendering performance of the compressed BTF are shown in parentheses. For STD, we let D1 = D2 = 256 and employ two configurations for k1
and k2 [Ruiters and Klein 2009, Section 4.2]. The model Bunny was provided in courtesy of Stanford Computer Graphics Laboratory [2011].

to generate visually pleasing effects at silhouette boundaries. In the
experiments, the mapping function is defined as

Ô′p =


1 if Ôp ≥ T (O) (fully visible),

W (O)Ôp if T (O)> Ôp > 0 (partially visible),
0 otherwise (invisible),

(26)

where T (O) and W (O) are, respectively, the user-defined thresh-
old and weight. In this way, Ô′p can be utilized as an alpha value
to blend a partially visible pixel with its background as shown in
Fig. 7(c). To approximate the blending effects without sorting, fully
visible pixels are rendered first. We then keep the contents of frame
buffer and blend partially visible pixels that pass the depth test. This
correctly captures the order of a fully visible pixel and a partially
visible pixel, but disregards the blending effects between two par-
tially visible pixels. The resulting artifacts are ignorable in practice
since the amount of partially visible pixels is usually small.

For K-CTA, since mode-ωv basis matrices are sparse, the recon-
struction in Step 7 can be computed from only their non-zero en-
tries. We achieve this by packing only the non-zero entries of mode-
ωv basis matrices in the corresponding texture, and constructing
another 2D texture to identify the cluster membership of each re-
sampled view direction. Since the reconstruction with mixture clus-
ters and mixing coefficients already resembles an interpolation pro-
cess, we currently only utilize the nearest neighbor of the novel
view direction for rendering. In our experience, nearest-neighbor
interpolation is usually unnecessary for K-CTA. The proposed re-

sampling scheme effectively leads to smooth transitions when the
viewpoint/object moves, at the cost of a dense resampling rate for
view directions (typically 256×256 in the parabolic parameteriza-
tion).

6.3.4 Results. Table II lists the experimental statistics of the
proposed all-frequency BRT algorithm in various configurations.
For macro-scale radiance transfer, we simulated light paths with
at most two inter-reflections to precompute a 6×32×32 radiance
transfer matrix at each vertex and approximated the raw BRT data
with a set of uniform SRBFs. Due to the enormous amount of BRT
data, we did not directly employ CTA to exploit inter-vertex co-
herence, but first applied clustered principal component analysis
[Sloan et al. 2003a] to classify vertices, as suggested by Sun et al.
[2007], and fine-tuned cluster membership using CTA. The reduc-
tion of the view mode was omitted to accelerate the compression
process, and the reduced ranks of the light and vertex modes were,
respectively, set to 64 and 12.

Fig. 1 compares the rendered all-frequency BRT images based
on different tensor approximation algorithms for meso-structures.
It shows that K-CTA achieves image quality comparable to N -
SVD, while providing almost the same rendering performance as
CTA. Although both CTA and K-CTA allow real-time rendering
performance, CTA sometimes produces noticeable artifacts when
the viewpoint/object moves (refer to the accompanying video).

In Fig. 8, we further present more rendered all-frequency BRT
images. From these images, the proposed BRT algorithm certainly
provides more reflectance and geometric details of meso-scale sur-
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face appearance than previous PRT/BRT methods. Furthermore,
VOTFs particularly allow rendering complex geometric features
without consuming hundreds of thousands of polygons to explic-
itly model the surface micro-geometry.

6.4 Discussions

In general, N -SVD provides the best perceptual quality among the
three tensor approximation algorithms, but CTA and K-CTA al-
low much more efficient rendering performance on GPUs for com-
plex meso-structures. Although the compression time of K-CTA is
slightly longer than N -SVD and CTA on average, K-CTA effec-
tively compromises between image quality and run-time rendering
performance.

Moreover, when the viewpoint/object moves at run-time, CTA
with linear interpolation from the three nearest view directions
sometimes produces noticeable artifacts. This is due to the intrinsic
nature of CTA in which the inter-cluster coherence is ignored, so
that significant discontinuities may occur at cluster boundaries, es-
pecially when inappropriate clustered results were found. A dense
sampling rate for the view mode of the raw BTFs or increasing the
mode-ωv reduced rank would solve this issue for CTA, but both of
them will increase the amount of compressed data and rendering
time. The acquisition of densely sampled raw BTFs, nevertheless,
is also a challenging problem. By contrast, K-CTA is less sensi-
tive to the quality of clustering since approximation errors are com-
pensated by additional mixture clusters. This compensation can be
regarded as an optimal interpolation scheme in the least-squares
sense to enable smooth transitions across different view directions.

It should also be noted that a related sparse representation for
BTFs, named sparse tensor decomposition (STD), was proposed
in [Ruiters and Klein 2009]. Although STD and K-CTA were both
inspired by K-SVD, they are essentially different approximation
algorithms. While STD simply applies K-SVD to selected dimen-
sions of the input BTF, K-CTA instead iteratively refines the de-
composed results to obtain a (locally) near-optimal solution. In Fig.
9, we compare the reconstructed BTF images and rendered results
between STD and K-CTA. From this figure, it can be shown that
under similar approximation errors, the run-time rendering perfor-
mance of K-CTA substantially outperforms that of STD. Moreover,
we also employ another configuration of STD (with a much higher
approximation error) for fast rendering rates, but this still fails to
match the run-time performance of K-CTA.

Note that the perceptual quality of rendered images may be sig-
nificantly different between STD and K-CTA, even with quantita-
tively similar signal-to-error ratios as in Fig. 9(d) and Fig. 9(e). We
believe that the proposed resampling scheme for K-CTA (Section
6.3.2) particularly contributes to the difference, and is also more
effective and efficient at run-time than the conventional nearest-
neighbor or barycentric interpolation [Ruiters and Klein 2009].

7. CONCLUSIONS AND FUTURE WORK

Data-driven models have stimulated the development of sophis-
ticated approximation algorithms for large-scale visual data sets.
This article presents a sparse multilinear model, namely K-CTA,
to enable efficient rendering of complex objects for real-time ap-
plications. K-CTA introduces the concept of sparse representation
into multilinear models, and effectively integrates clustering, sparse
coding, and tensor approximation into a unified framework. More-
over, KCTA can also exploit inter-cluster coherence for smooth
transitions across different physical conditions by mixing the de-
composed results of multiple clusters. Experimental results demon-

strate that K-CTA is a compact and efficient representation for spa-
tially varying surface appearance, such as BTFs, VOTFs, and all-
frequency BRT data. Furthermore, the signed-distance representa-
tion for visibility information especially preserves sharp silhouettes
at the meso-scale even after compression using tensor-based meth-
ods.

In the future, we intend to improve both image quality and ren-
dering performance by combining K-CTA with functional approx-
imation approaches, such as specular lobe separation [Sun et al.
2007], to efficiently model highly specular spatially varying sur-
face appearance. Moreover, the proposed K-CTA algorithm is not
restricted to solve problems in computer graphics. They are indeed
general approximation algorithms that can be employed to analyze
various multidimensional data sets. We believe that K-CTA can be
applied to other data-driven models, such as the analysis of time-
varying materials and volume data sets, and may have an impact on
many fields outside computer graphics.

APPENDIX

In the following sections, we present the mathematical proofs of the
proposed theorems and lemma in this article. Due to limited paper
length, we only describe the main ideas and key points. Interested
readers may refer to [Tsai 2009, Chapters 5.5 and 6.4] for more
details.

A. OBJECTIVE FUNCTIONS IN THE CLUSTERING
STAGE

In the clustering stage, each mode-m sub-tensor of A is se-
quentially classified into Km mixture clusters using a greedy ap-
proach, while the core tensor and basis matrices, except for the
mode-m basis matrix, of each cluster are fixed. Since the cluster
membership and mixing coefficients of each mode-m sub-tensor
are independent, Eq. (8), without the orthonormal constraints on
Um,1,Um,2, . . . ,Um,C , can be separated into Im distinct con-
strained least-squares optimization sub-problems as

min{
(Um,c)i∗

}C

c=1

∥∥∥∥A〈mi〉 −
C∑

c=1

(
Zc ×m

(
Um,c

)
i∗

N
ą

n
n=1
n6=m

Un,c

)∥∥∥∥2
F

,

subject to


∑C

c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0
= KmRm,

∀c,
∥∥∥(Um,c

)
i∗

∥∥∥
0
∈ {0, Rm},

(27)

for i = 1, 2, . . . , Im. Note that the orthonormal constraints on
Um,1,Um,2, . . . ,Um,C in (8) can be enforced from the optimized
results of (27) using the post-processing approach as described in
Section 4.2.3.

A.1 First Mixture Cluster

Before proving Theorem 1, we first show the proof of Lemma 2.

PROOF OF LEMMA 2. The first mixture cluster ci1 of A〈mi〉 is
selected as if Km = 1. Since the constraints in (27) can be enforced
by setting

(
Um,c

)
i∗ to zeros for all c 6= ci1 , the objective function

in (27) can be rewritten as∥∥∥∥ufm(A〈mi〉

)
−
(
Um,ci1

)
i∗ufm

(
Zci1

N
ą

n
n=1
n 6=m

Un,ci1

)∥∥∥∥2
2

, (28)
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where ‖·‖2 denotes the `2 norm of a vector. Eq. (28) can be easily
verified from the definitions of the mode-n unfolded matrix, the
mode-n product, and the Frobenius norm. Therefore, the optimal
solution of

(
Um,ci1

)
i∗ to (28) is the least-squares estimation of

the solution to the following linear equation:

ufm

(
A〈mi〉

)
=
(
Um,ci1

)
i∗ufm

(
Zci1

)( N⊗
n=1
n 6=m

UT
n,ci1

)
, (29)

where
N⊗

n=1
n6=m

UT
n,ci1

= UT
1,ci1
⊗· · ·⊗UT

m−1,ci1
⊗UT

m+1,ci1
⊗· · ·⊗UT

N,ci1

(30)
denotes a series of Kronecker products, and the symbol ⊗ speci-
fies the Kronecker product operator. Eq. (29) comes from the rela-
tion between the mode-n product and the Kronecker product [De
Lathauwer et al. 2000]. Since each basis matrix has orthonormal
columns, the least-squares solution of

(
Um,ci1

)
i∗ to (28) is

(
Um,ci

)
i∗ = ufm

(
A〈mi〉

)(
ufm
(
Zci

)( N⊗
n=1
n 6=m

UT
n,ci

))+

= ufm

(
A〈mi〉

N
ą

n
n=1
n 6=m

UT
n,ci1

)
ufm(Zci1

)+. (31)

Eq. (11) is thus proved.

Now we can finally prove Theorem 1 with the aid of Lemma 2.

PROOF OF THEOREM 1. After substituting (31) for
(
Um,ci1

)
i∗

in (28), we have [Tsai 2009, Chapters 5.5 and 6.4.1]∥∥∥A〈mi〉

∥∥∥2
F
−
∥∥∥∥ufm(A〈mi〉

N
ą

n
n=1
n 6=m

UT
n,ci1

)
VT

m,ci1

∥∥∥∥2
F

. (32)

Since the first term in (32) is a constant, the minimization of (32)
is equivalent to the maximization of the second term in (32). Theo-
rem 1 thus is proved by identifying that the cluster membership is
implicitly specified in the solution to (27).

A.2 Remaining Mixture Clusters

PROOF OF THEOREM 3. For the k-th mixture cluster cik of
A〈mi〉 other than ci1 , it is determined as if Km = k. When pre-
viously selected clusters ci1 , ci2 , . . . , cik−1 and the corresponding
mixing coefficients are fixed, the objective function in (27) be-
comes ∥∥∥∥R(k)

〈mi〉
−Zcik

×m

(
Um,cik

)
i∗

N
ą

n
n=1
n6=m

Un,cik

∥∥∥∥2
F

, (33)

where R(k)

〈mi〉
is defined as (12). By following the same approach as

in the proof of Theorem 1 and Lemma 2, the minimization of (33)
is equivalent to the maximization of∥∥∥∥ufm(R(k)

〈mi〉

N
ą

n
n=1
n 6=m

UT
n,cik

)
VT

m,cik

∥∥∥∥2
F

. (34)

Substituting (12) for R(k)

〈mi〉
in (34) then yields the objective func-

tion in (13).

B. OPTIMAL PROJECTION FOR MIXING
COEFFICIENTS

PROOF OF THEOREM 4. Suppose that total k mixture clusters
ci1 , ci2 , . . . , cik of A〈mi〉 have been selected as if Km = k. Sim-
ilar to (28), since the constraints in (27) can be satisfied by set-
ting

(
Um,c

)
i∗ to zeros for all c /∈

{
ci1 , ci2 , . . . , cik

}
, Eq. (27) can

be simplified into a standard unconstrained least-squares problem
whose objective function is∥∥∥∥∥ufm(A〈mi〉

)
−

k∑
j=1

(
Um,cij

)
i∗ufm

(
Zcij

N
ą

n
n=1
n 6=m

Un,cij

)∥∥∥∥∥
2

2

. (35)

By taking the first-order partial derivatives of (35) with respect to
each entry of

(
Um,ci1

)
i∗ and setting the resulting derivatives to

zeros, we have the following linear equation:

k∑
j=1

ufm

(
Zci1

N
ą

n
n=1
n 6=m

Un,ci1

)
ufm

(
Zcij

N
ą

n
n=1
n 6=m

Un,cij

)T (
Um,cij

)T
i∗

= ufm

(
Zci1

N
ą

n
n=1
n 6=m

Un,ci1

)
ufm
(
A〈mi〉

)T
. (36)

The right side of (36) can be rewritten as [Tsai 2009, Chapter 6.4.2]

ufm

(
Zci1

)
ufm

(
A〈mi〉

N
ą

n
n=1
n6=m

UT
n,ci1

)T
= f

(ci1 )
m

(
A(ci1 )

〈mi〉

)T
, (37)

where f
(c)
m (·) is defined in (19). Similarly, the left side of (36) is

equal to

k∑
j=1

ufm

(
Zci1

N
ą

n
n=1
n 6=m

UT
n,cij

Un,ci1

)
ufm

(
Zcij

)T (
Um,cij

)T
i∗

=

k∑
j=1

f
(cij )

m

(
Z

(cij )

ci1

)(
Um,cij

)T
i∗. (38)

By following (36), (37), and (38) with respect to each entry of(
Um,cij

)
i∗ for all j, we have the following set of linear equations:

k∑
j=1

f
(cij )

m

(
Z

(cij )

ci1

)(
Um,cij

)T
i∗ = f

(ci1 )
m

(
A(ci1 )

〈mi〉

)T
,

...
...

k∑
j=1

f
(cij )

m

(
Z

(cij )

cik

)(
Um,cij

)T
i∗ = f

(cik
)

m

(
A(cik

)

〈mi〉

)T
,

(39)

which can be further written in a matrix form as Z(k)
miu

(k)
mi = a

(k)
mi ,

where u
(k)
mi , Z(k)

mi , and a
(k)
mi are, respectively, defined in (16), (17),

and (18). We thus can conclude that (15) gives the least-squares
solution of

(
Um,ci1

)
i∗,
(
Um,ci2

)
i∗, . . . ,

(
Um,cik

)
i∗ to (35).
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