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This article presents a generalized sparse multilinear model, namely multi-
way K-clustered tensor approximation (MK-CTA), for synthesizing pho-
torealistic 3D images from large-scale multidimensional visual datasets.
MK-CTA extends previous tensor approximation algorithms, particularly
K-clustered tensor approximation (K-CTA) [Tsai and Shih 2012], to parti-
tion a multidimensional dataset along more than one dimension into over-
lapped clusters. On the contrary, K-CTA only sparsely clusters a dataset
along just one dimension and often fails to efficiently approximate other un-
clustered dimensions. By generalizing K-CTA with multiway sparse clus-
tering, MK-CTA can be regarded as a novel sparse tensor-based model that
simultaneously exploits the intra- and inter-cluster coherence among dif-
ferent dimensions of an input dataset. Our experiments demonstrate that
MK-CTA can accurately and compactly represent various multidimensional
datasets with complex and sharp visual features, including bidirectional tex-
ture functions (BTFs) [Dana et al. 1999], time-varying light fields (TVLFs)
[Bando et al. 2013], and time-varying volume data (TVVD) [Wang et al.
2010], while easily achieving high rendering rates in practical graphics ap-
plications.
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1. INTRODUCTION

During the last decades, data-driven rendering has shown many
promising results and caught a lot of attention. Related methods
not only avoid complex physically-based procedures at runtime, but
also allow intuitive synthesis of photorealistic 3D images. One of
the most famous and representative models may be image-based
rendering [Gortler et al. 1996; Levoy and Hanrahan 1996; Shum
et al. 2007]. Even the well-known texture mapping techniques can
be regarded as a simple type of data-driven models. Nevertheless,
high-quality results based on data-driven rendering require an enor-
mous amount of raw visual datasets, which is usually over several
gigabytes. A sophisticated approximation method for the raw data
thus becomes a major research topic in data-driven rendering. Re-
cently, there have been tremendous developments in this field [Filip
and Haindl 2009; Ramamoorthi 2009], but it is still challenging to
achieve a good tradeoff among fast rendering rates, high compres-
sion ratios, and low approximation errors for large-scale multidi-
mensional visual datasets.

In this article, we propose a novel sparse multilinear model,
namely MK-CTA, to solve this problem. MK-CTA seamlessly in-
tegrates multiway clustering, sparse representation, and tensor ap-
proximation. It overcomes the major drawback of previous tensor
approximation algorithms to allow clustering data and analyzing
coherence along more than one dimension. Specifically, MK-CTA
partitions an input dataset along multiple dimensions into clusters,
so that data variations within each cluster can be significantly re-
duced to improve intra-cluster coherence for efficient approxima-
tion. To further exploit inter-cluster coherence, MK-CTA sparsely
mixes the approximated results of different clusters, particularly
across different dimensions. It thus can be regarded as general-
ized vector quantization with overlapped blocks and varying block
sizes. Elements in a block also can be transferred into another block
through sparse clustering.

Note that the proposed method is not just a simple extension of
previous multilinear models, such as K-CTA [Tsai and Shih 2012].
A trivial extension may be to partition the input dataset along each
dimension, respectively, regardless of the correlations among dif-
ferent dimensions. Nevertheless, this approach only can obtain a
suboptimal solution. The complex mixing effects of different di-
mensions particularly require generalized mathematical formula-
tion and theorems that are different from previous multilinear mod-
els. MK-CTA also needs a multiway sparse clustering algorithm to
account for cross-dimensional correlations and to derive a (locally)
optimal solution.

ACM Transactions on Graphics, Vol. 34, No. 5, Article 157, Publication date: October 2015.



2 • Yu-Ting Tsai

(a) Rendered image of MK-CTA (b) Raw data (c) N -SVD (d) K-CTA (e) MK-CTA
(1.79 FPS) (29.03 dB, 0.05 FPS) (28.9 dB, 1.26 FPS) (28.95 dB, 56.24 FPS)

Fig. 1. Comparison of approximated TVLFs (”AnimatedBunnies” c©Synthetic Light Field Archive) among N -SVD [De Lathauwer et al. 2000], K-CTA
[Tsai and Shih 2012], and MK-CTA with similar compression ratios. In subfigures (b)–(e), signal-to-noise ratios and rendering performance are shown in
parentheses. The rendering performance of raw data is slow due to an enormous data amount and frequent disk access operations, but still faster than that of
N -SVD and K-CTA, while MK-CTA holds the highest rendering rate. Although the signal-to-noise ratios of the three algorithms are similar, there are strong
ringing effects and some visible seams respectively in the results of N -SVD and K-CTA, which will be discussed more in Section 5.2. The visual quality
of MK-CTA is thus still the best by manual inspection. Readers may refer to supplemental materials for full-size images and our accompanying video for
animations of TVLFs.

Moreover, we demonstrate applications of MK-CTA to vari-
ous multidimensional visual datasets, including BTFs [Dana et al.
1999], TVLFs [Bando et al. 2013], and TVVD [Wang et al. 2010].
Experimental results reveal that the approximated data of MK-CTA
are compact and accurate. It is also simple for MK-CTA to achieve
either faster rendering rates (with similar compression ratios) or
higher visual quality (with similar runtime performance) than pre-
vious multilinear models, thus providing a better tradeoff among
rendering performance, visual quality, and memory requirements.

2. RELATED WORK

2.1 Tensor Approximation

Recently, tensor approximation (or multilinear models) [De Lath-
auwer et al. 2000; Kolda and Bader 2009] has drawn a lot of at-
tention in computer graphics. Due to its powerful approximation
efficiency and flexibility, tensor approximation is suitable for rep-
resenting large-scale multidimensional visual datasets. Vasilescu
and Terzopoulos [2004] introduced TensorTextures to model BTFs
based onN -SVD [De Lathauwer et al. 2000]. It was soon extended
into an efficient out-of-core method by Wang et al. [2005].

Advanced multilinear models have also been developed by com-
biningN -SVD with various sophisticated data analysis algorithms.
Clustered tensor approximation (CTA) [Sun et al. 2007; Tsai and
Shih 2006] relies on clustering to reduce intra-cluster data varia-
tions, so that the approximation efficiency of N -SVD within each
cluster can be increased. K-CTA [Tsai and Shih 2012] further ex-
tends CTA with sparse representation to improve visual quality,
while maintaining similar runtime performance. Moreover, Wu et
al. [2008] proposed a hierarchical tensor representation by integrat-
ing multiresolution analysis with N -SVD to capture multiscale vi-
sual features in an input dataset. Suter et al. [2011] presented a
GPU-based rendering framework for large-scale volume data using
hierarchical brick tensor decomposition.

Nevertheless, the rendering performance of previous multilinear
models may be very slow when data variations are large among
multiple dimensions. In this case, CTA and K-CTA only can reduce
variations along just one specified dimension by clustering, while
still relying on N -SVD to analyze the coherence among other di-

mensions. Moreover, data with large variations often contain many
high-frequency visual features. For hierarchical tensor approxima-
tion, these features are captured only at fine scales and may be lost
at runtime when rendering performance is a major concern. By con-
trast, MK-CTA can intrinsically handle this challenging issue by
multiway clustering to provide high rendering rates at runtime.

2.2 Sparse Representation

Sparse representation [Elad et al. 2010; Wright et al. 2010] targets
at modeling data as linear combinations of just a few atoms in a dic-
tionary. This simple and intuitive idea has been shown to work very
well in practice, since real-world signals are often dominated by
only a few factors. In computer graphics, sparse representation has
been applied to solve many problems. Ruiters and Klein [2009] in-
troduced sparse tensor decomposition to compress BTFs. Tsai and
Shih [2012] proposed K-CTA as a multilinear generalization of K-
SVD [Aharon et al. 2006] to approximate multidimensional visual
datasets. Compressed sensing [Starck and Bobin 2010; Wright et al.
2010], which exploits the concept of sparsity to efficiently recon-
struct signals, has also been employed to improve light transport ac-
quisition [Peers et al. 2009], 3D model reconstruction [Avron et al.
2010], and ray tracing [Sen and Darabi 2011].

We believe that sparse representation is promising for data-
driven rendering. Due to its merit that only a few atoms are re-
lated to an observation, the runtime process can be very efficient
on GPUs. Nevertheless, previous sparse models are inadequate to
high-performance rendering. While it is difficult for sparse tensor
decomposition to achieve high rendering performance, K-CTA may
need to sacrifice visual quality for real-time rendering rates when
data variations are large among multiple dimensions. By contrast,
MK-CTA can achieve a better tradeoff between visual quality and
rendering performance than previous methods.

2.3 Multiway Clustering

Multiway clustering [Banerjee et al. 2007; Bekkerman et al. 2005;
Shashua et al. 2006] generalizes traditional clustering methods
to partition data based on correlations among different dimen-
sions. It exploits these multiway correlations to form a high-quality
and efficient clustering algorithm for large-scale multidimensional
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datasets. Nevertheless, little attention has been paid to multiway
clustering in computer graphics. Hašan et al. [2008] applied mul-
tiway clustering to solve global illumination issues for dynamic
scenes, so that temporal coherence can be exploited to avoid flick-
ering from sparsely sampled pixels and lights. Havran et al. [2010]
proposed to approximate BTFs separately for individual dimen-
sions based on multilevel vector quantization, which also can be
considered as a variant of multiway clustering. Sun et al. [2011]
introduced an all-frequency bi-scale radiance transfer algorithm by
employing biclustering, namely two-way clustering, to compress
precomputed transfer matrices.

Related articles in computer graphics generally focus on com-
mon multiway clustering approaches that linearly represent par-
titioned data. By contrast, we present a novel clustering algo-
rithm that combines multilinear models and sparse representation
with multiway clustering. MK-CTA thus can be regarded as a uni-
fied learning/analysis framework for large-scale multidimensional
datasets.

3. MK-CTA ALGORITHM

3.1 Notation

In this article, we follow the basic definitions of tensor algebra in
[De Lathauwer et al. 2000]. For simplicity, the in-core tensor nota-
tion is adopted, even if the out-of-core algorithm [Wang et al. 2005]
was actually employed in our implementation.

An N -th order tensor A ∈ RI1×···×IN is a high order general-
ization of a vector (a first order tensor). It can be defined as an N -
dimensional array, where each dimension corresponds to a distinct
mode in tensor algebra. Figure 2(a) shows an example of a second
order tensor (a matrix).

The transpose of a matrix U ∈ RI×J is written as UT , and the
row vector (U)i∗ denotes the i-th row of U. The scalar (U)ij de-
notes the element in row i and column j of U; similarly, (A)i1···iN
is an element of A. The i-th mode-n sub-tensor [Tsai and Shih
2012] of A is denoted by A〈n,i〉 ∈ RI1×···×In−1×1×In+1×···×IN ,
whose elements are(

A〈n,i〉
)
i1···in−11 in+1···iN

= (A)i1···in−1i in+1···iN . (1)

Let 〈A,B〉 represent the scalar product of two N -th order ten-
sors A,B ∈ RI1×···×IN , and ‖A‖F =

√
〈A,A〉 be the Frobenius

norm of A. The symbol ufn(A) ∈ RIn×(In+1···IN I1···In−1) denotes
the mode-n unfolded matrix of A, which results from retaining the
n-th mode of A and flattening the others (refer to [De Lathauwer
et al. 2000, Figure 2.1]). The mode-n product of A and a ma-
trix U ∈ RJn×In is denoted by B = A×nU. A series of mode-n
products is defined as

B = A
N¡

n
n=1

Un = A×1 U1 · · · ×N UN . (2)

3.2 Key Ideas

K-CTA combines tensor approximation, clustering, and sparse rep-
resentation to improve rendering performance overN -SVD and vi-
sual quality over CTA in real-time applications. Along the clustered
mode m, it sparsely classifies each mode-m sub-tensor of an N -th
order tensor A into more than one cluster, and then decomposes
sub-tensors within a cluster using N -SVD. For example, Figure
2(c) illustrates that each mode-1 sub-tensor, namely each row, of a
second order tensor is respectively classified along the first mode
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Fig. 2. Comparison of traditional vector quantization, K-CTA, and MK-
CTA for a second order tensor (also as a matrix or a 2D grayscale image).
In each subfigure, a box is a single tensor element, and the number inside
specifies its identity. Vector quantization partitions the input tensor into dis-
joint blocks/clusters with fixed membership and the same block size, for
instance, 2×2 in (b). K-CTA instead allows overlapped clusters with vary-
ing sizes and members, but only one mode can be clustered, such as the
first mode in (c). By contrast, MK-CTA can split the tensor along multiple
modes and associate a tensor element with clusters across different modes,
for example in (d), the element ”1” with clusters

[
1 1

]
,
[
1 2

]
,
[
2 1

]
, and[

2 2
]
.

into two clusters, resulting in three overlapped clusters. In this way,
the data coherence within each cluster and among different clusters
can be simultaneously exploited.

Although K-CTA can exploit both intra- and inter-cluster co-
herence to reduce approximation errors and reconstruction costs,
it only partitions A along just one user-specified clustered mode. If
there are large data variations among more than one mode, K-CTA
will fail to efficiently approximate sub-tensors within each cluster.
To solve this problem, an intuitive way is to sequentially partition
A along multiple modes into sparsely overlapped clusters for sub-
sequent tensor decomposition. Nevertheless, this simple idea is far
from easy to achieve. If the mixing correlations among different
modes and clusters are ignored, the derived solution is actually not
(locally) optimal. Thus, we develop a multiway sparse clustering
algorithm based on multilinear models to account for the complex
mixing correlations.

To intuitively explain our key ideas, Figure 2 compares MK-CTA
to traditional vector quantization and K-CTA for a second order
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Fig. 3. An example of MK-CTA for a third order tensor. The input tensor is respectively partitioned along its three modes into C1 = 3, C2 = 3, and C3 = 2

clusters, with K1 = 2, K2 = 2, and K3 = 1 mixture clusters for each mode. Thus, the total number of clusters is C1 ·C2 ·C3 = 18, and each cluster is
indexed by a vector

[
c1 c2 c3

]
(highlighted in white for the cluster

[
2 3 1

]
). In our framework, all the elements in a mode-n sub-tensor should be assigned

to the same Kn mode-n cluster subsets. For example, the elements in the last mode-1 sub-tensor (highlighted in yellow) are assigned to the first and the
second mode-1 cluster subsets after mode-1 clustering (in the middle bottom), where the j-th mode-1 cluster subset is the set of all the cluster index vectors
with c1 = j, namely clusters

[
j 1 1

]
,
[
j 1 2

]
,
[
j 2 1

]
,
[
j 2 2

]
,
[
j 3 1

]
, and

[
j 3 2

]
. Note that clusters may be overlapped if ∃n,Kn > 1, such

as clusters
[
1 1 1

]
and

[
2 1 1

]
after mode-1 clustering. Each element in the tensor (highlighted in green for an element) is respectively related to total

K1 ·K2 ·K3 = 4 clusters, and can be approximated by a linear combination of the reconstructed results of these clusters (partial tensor elements in the top).

tensor. Figure 3 further illustrates an example of MK-CTA for a
third order tensor.

3.3 Mathematical Formulation

To allow sparse clustering along multiple modes, MK-CTA is for-
mulated as the following constrained least-squares optimization
problem:

min{
Zc,{Un,c}Nn=1

}
c∈C

∥∥∥∥A−∑
c∈C

(
Zc

N¡

n
n=1

Un,c

)∥∥∥∥2
F

, s. t.



∀i, ∀n,∀c1, · · · ,∀cn−1,∀cn+1, · · · ,∀cN ,∑Cn
cn=1

∥∥∥(Un,c

)
i∗

∥∥∥
0
= KnRn,

∀i, ∀n,∀c,
∥∥∥(Un,c

)
i∗

∥∥∥
0
∈ {0, Rn},

∀i, ∀j, ∀n,∀c, c′∈Cn,j ,
∥∥∥(Un,c

)
i∗

∥∥∥
0
=
∥∥∥(Un,c′

)
i∗

∥∥∥
0
,

∀n, ∀c, UT
n,cUn,c = IRn ,

(3)

whereCn ∈ Z+ andKn ∈ Z+ are the total numbers of clusters and
mixture clusters for the n-th mode of A, Rn ∈ Z+ represents the
mode-n reduced rank, Zc ∈ RR1×···×RN and Un,c ∈ RIn×Rn re-
spectively denote the decomposed core tensor and the mode-n basis
matrix of a cluster c, IRn ∈ RRn×Rn is the identity matrix of size
Rn×Rn, and ‖·‖0 specifies the `0 norm of a vector. Note that in
our formulation, a cluster is indexed by a vector c =

[
c1 · · · cN

]
,

where cn ∈ {1, . . . , Cn} is the mode-n cluster index. For exam-
ple, the index vector of the cluster highlighted in white in Figure

3 is
[
2 3 1

]
. Moreover, C represents the set of all possible clus-

ter index vectors, and Cn,j denotes the j-th mode-n cluster subset,
which includes all the cluster index vectors whose n-th elements
are j, namely cn = j.

Eq. (3) is a generalization of the K-CTA formulation [Tsai and
Shih 2012]. The first, second, and fourth constraints similarly en-
force that all the mode-n basis matrices are column-orthonormal
and sparse, containing the nonzero mixing coefficients of each
mode-n sub-tensor. Specifically, the mixing coefficients of the i-
th mode-n sub-tensor for a cluster c corresponds to the elements
in row i of Un,c. Unlike K-CTA, the third constraint further re-
stricts that all the elements in a mode-n sub-tensor should be clas-
sified into the same Kn mode-n cluster subsets. This means that
we do not apply hierarchical clustering in order to simplify the pro-
posed algorithm. As a result, each tensor element belongs to total∏N

n=1Kn clusters that are the intersection of all its associated clus-
ter subsets. For example, the tensor element highlighted in green in
Figure 3 is associated with cluster subsets C1,1, C1,2, C2,2, C2,3,
and C3,1 after mode-3 clustering (in the right bottom). It thus be-
longs to clusters

[
1 2 1

]
,
[
1 3 1

]
,
[
2 2 1

]
, and

[
2 3 1

]
.

3.4 Algorithm Overview

The proposed MK-CTA algorithm iteratively alternates between
two stages, namely clustering and decomposition stages, until con-
vergence to derive a (locally) optimal solution to Eq. (3).

In the clustering stage (Section 3.5), the input tensor A is parti-
tioned along each mode. Since it would be numerically intractable
to simultaneously partition all the modes of A, we instead sequen-
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tially handle each mode one by one to simplify the proposed al-
gorithm, while fixing the results of other modes and taking them
into account. To cluster the n-th mode of A, all variables in Eq.
(3) are fixed, except for the mode-n basis matrix of each cluster.
Then, each mode-n sub-tensor is assigned to the best Kn mode-n
cluster subsets using either optimal search (Section 3.5.1) or greedy
search (Section 3.5.2), while the nonzero elements in the mode-n
basis matrices are solved by minimizing the approximation error of
each mode-n sub-tensor.

In the decomposition stage (Section 3.6), the core tensor and ba-
sis matrices of each cluster are decomposed using N -SVD without
altering cluster membership. Since members of different clusters
may be overlapped, we decompose one cluster at a time, while
leaving others unchanged. Readers may refer to Algorithm 1 for
the pseudocode of MK-CTA.

Algorithm 1: The MK-CTA algorithm.

Input: A, {Rn}Nn=1, {Cn}Nn=1, {Kn}Nn=1, initial guess for{
Zc, {Un,c}Nn=1

}
c∈C, and convergence threshold ε

Output:
{
Zc, {Un,c}Nn=1

}
c∈C

repeat
foreach c ∈ C do Z ′c ← Zc

// Clustering stage
for n← 1 to N do // Mode-n clustering

foreach c ∈ C do Initialize each element of Un,c to zero
Update {Un,c}c∈C based on optimal or greedy search
foreach c ∈ C do Perform post-process (Section 3.5.3)

// Decomposition stage
foreach c ∈ C do

Compute the residual tensor Rc and membership matrices
{Mn,c}Nn=1 of cluster c (Section 3.6)
Apply N -SVD to Rc for updating Zc and {Un,c}Nn=1

for n← 1 to N do Un,c ←Mn,cUn,c

until
∑
c∈C

∣∣∣∥∥Zc

∥∥2
F
−
∥∥Z ′c∥∥2F ∣∣∣

‖A‖2F
< ε

3.5 Clustering Stage

In this stage, sparse clustering is sequentially performed along each
mode of A, from the first mode to theN -th one. To cluster the n-th
mode, we respectively determine exactly Kn mode-n cluster in-
dices for each mode-n sub-tensor, and compute the corresponding
nonzero elements in the mode-n basis matrix of each cluster by
minimizing the approximation errors of mode-n sub-tensors in the
least-squares sense.

As discussed in previous work [Tsai and Shih 2012], sparse clus-
tering along the n-th mode can be considered as a pursuit problem
that is NP-hard [Davis et al. 1997]. In addition, the complex corre-
lations among different modes make the pursuit problem even more
difficult. We therefore propose two approaches to solve this issue.
If the optimal solution is desired, optimal search (Section 3.5.1)
should be applied to update the cluster membership and mode-n ba-
sis matrices. If an approximate solution is acceptable, or one would
like to incrementally classify a mode-n sub-tensor into additional
mode-n cluster subsets, greedy search (Section 3.5.2) should be
employed instead. Note that the convergence problem may occur

when greedy search is adopted, which will be further discussed in
Section 5.4.

3.5.1 Optimal Search. To cluster the n-th mode, optimal
search derives the mode-n basis matrix of each cluster using a
brute-force approach. By fixing all the variables in Eq. (3) other
than the mode-n basis matrices, we first find the best Kn mode-n
cluster indices for each mode-n sub-tensor, and then respectively
solve the corresponding rows of each mode-n sub-tensor in the
mode-n basis matrices.

More formally, the best Kn mode-n cluster indices for the i-th
mode-n sub-tensor A〈n,i〉, namely c(1)n,i, . . . , c

(Kn)
n,i , are determined

from all possible Kn-combinations of {1, . . . , Cn} by solving the
following constrained integer optimization problem:

max{
c
(k)
n,i

}Kn

k=1

ufn
(
A〈n,i〉

)
Z

(Kn)
n,i

(
Z

(Kn)
n,i

)†
ufn
(
A〈n,i〉

)T
,

s. t. ∀k, c(k)n,i∈{1, . . . , Cn} ,
(4)

where

Z
(k)
n,i =

[
Ẑ

(c
(1)
n,i)

n · · · Ẑ
(c

(k)
n,i)

n

]
, (5)

Ẑ(j)
n =

[
ufn

(
Ẑ(Cn,j)1

)T
· · · ufn

(
Ẑ(Cn,j)|Cn,j |

)T ]
, (6)

Ẑc = Zc

N¡

n′
n′=1
n′ 6=n

Un′,c, (7)

the superscript ”†” specifies the Moore-Penrose pseudoinverse, (·)i
represents the i-th element of a set, and |·| denotes the cardinality
of a set.

Moreover, the corresponding rows of A〈n,i〉 in the mode-n basis
matrices are updated by

u
(Kn)
n,i =

(
Z

(Kn)
n,i

)†
ufn
(
A〈n,i〉

)T
, (8)

where

u
(k)
n,i =

[
û
(c

(1)
n,i)

n,i · · · û
(c

(k)
n,i)

n,i

]T
, (9)

û
(j)
n,i =

[(
Un,(Cn,j)1

)
i∗
· · ·

(
Un,(Cn,j)|Cn,j |

)
i∗

]
. (10)

Readers may further refer to Algorithm 2 for the procedure of op-
timal search.

Algorithm 2: The optimal search algorithm.

Input: A, n, Cn, Kn, and
{
Zc,

{
Un′,c

}N
n′=1

}
c∈C

Output: {Un,c}c∈C
for i← 1 to In do

Obtain c(1)n,i, . . . , c
(Kn)
n,i of A〈n,i〉 by solving Eq. (4)

foreach c ∈
Kn⋃
k=1

C
n,c

(k)
n,i

do Update
(
Un,c

)
i∗ as Eq. (8)

In the appendix, we show the mathematical proofs of Eq. (8) and
the objective function in Eq. (4). Readers may find out that Eq. (8)
is similar to non-orthogonal projection in linear algebra or the op-
timal projection method in K-CTA, particularly Eq. (15) in [Tsai
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6 • Yu-Ting Tsai

and Shih 2012]. The matrix
(
Z

(Kn)
n,i

)† plays the same role as a pro-
jection operator that accounts for the correlations between the sub-
spaces of any two clusters in the selected Kn mode-n cluster sub-
sets. Unlike K-CTA, MK-CTA must further consider the clustered
results of other modes in order to compute the optimal solution to
c
(1)
n,i, . . . , c

(Kn)
n,i . In other words, to assign a mode-n sub-tensor into

a mode-n cluster subset, elements in the sub-tensor should be parti-
tioned according to the clustered results of other modes. For A〈n,i〉,
this can be implicitly handled by the multiplication of ufn

(
A〈n,i〉

)
with Z

(Kn)
n,i , as shown in the objective function in Eq. (4).

3.5.2 Greedy Search. For the n-th mode, when either the num-
ber of clusters Cn or the number of mixture clusters Kn is large,
applying optimal search to update the mode-n basis matrix of each
cluster may be impractically time-consuming. Fortunately, greedy
approaches for the pursuit problem often provide appropriate ap-
proximate solutions [Aharon et al. 2006; Davis et al. 1997]. In ad-
dition to optimal search, we thus propose a greedy algorithm to
derive an approximate solution to the mode-n basis matrices. For
each mode-n sub-tensor, the proposed greedy algorithm relies on it-
eratively searching for the bestKn mode-n cluster indices. At each
iteration, we only resolve one of them, while keeping previously
selected cluster indices unaltered, but their corresponding rows in
the mode-n basis matrices are allowed to change values.

Specifically, for the i-th mode-n sub-tensor A〈n,i〉, we sequen-
tially determine c(1)n,i, . . . , c

(Kn)
n,i at each iteration. The k-th mode-n

cluster index c(k)n,i is resolved at the k-th iteration from previously

selected k − 1 mode-n cluster indices c(1)n,i, . . . , c
(k−1)
n,i . Namely,

c
(k)
n,i is determined by solving the following constrained integer op-

timization problem:

max
c
(k)
n,i

ufn
(
A〈n,i〉

)
Z

(k)
n,i

(
Z

(k)
n,i

)†
ufn
(
A〈n,i〉

)T
,

s. t. c(k)n,i∈{1, . . . , Cn} , c(k)n,i /∈
{
c
(1)
n,i, . . . , c

(k−1)
n,i

}
.

(11)

Moreover, readers may refer to Algorithm 3 for the pseudocode of
greedy search.

Algorithm 3: The greedy search algorithm.

Input: A, n, Cn, Kn, and
{
Zc,

{
Un′,c

}N
n′=1

}
c∈C

Output: {Un,c}c∈C
for i← 1 to In do

for k ← 1 to Kn do Obtain c(k)n,i of A〈n,i〉 by solving Eq. (11)

foreach c ∈
Kn⋃
k=1

C
n,c

(k)
n,i

do Update
(
Un,c

)
i∗ as Eq. (8)

It is worth noted that the objective function in Eq. (11) is in fact
a straightforward modification of that in Eq. (4), but quite different
from the objective function of deriving remaining mixture clusters
in K-CTA, namely Theorem 3 in [Tsai and Shih 2012]. Like K-
CTA, MK-CTA greedily selects the k-th cluster index by simulta-
neously maximizing intra-cluster coherence and minimizing inter-
cluster coherence. Nevertheless, MK-CTA resolves each cluster in-
dex by minimizing the approximation error of A〈n,i〉, while K-CTA
only minimizes the residual error of A〈n,i〉. In other words, when
determining the k-th cluster index, K-CTA fixes the corresponding

rows of previously selected cluster indices in the mode-n basis ma-
trices, but MK-CTA allows them to change values. This is similar
to the difference between orthogonal matching pursuit (OMP) and
orthogonal least squares (OLS) for the pursuit problem1 [Blumen-
sath and Davies 2007; Soussen et al. 2013]. The proposed greedy
algorithm thus can be regarded as a multilinear generalization of
OLS, in contrast to the search algorithm of K-CTA as generalized
OMP. Since it was reported that OLS is usually more robust and
accurate than OMP [Soussen et al. 2013], MK-CTA also holds the
merit of OLS. In addition, MK-CTA further takes the clustered re-
sults of other modes into account, by the matrix Z

(k)
n,i and its Moore-

Penrose pseudoinverse, in order to prevent a poor solution.

3.5.3 Post-Process. The derived mode-n basis matrices by
optimal (or greedy) search are not guaranteed to be column-
orthonormal after clustering the n-th mode of A, so that the or-
thonormal constraints on basis matrices in Eq. (3) may be violated.
To orthonormalize the mode-n basis matrix of each cluster, we per-
form an additional post-process using singular value decomposi-
tion, which is the same as that described in [Tsai and Shih 2012,
Section 4.2.3]. Note that this post-process only removes the scale
ambiguity and has no other effects on the derived solution.

3.6 Decomposition Stage

After sequentially clustering each mode of A, we would like to fur-
ther update the core tensor and basis matrices of each cluster using
N -SVD, while fixing the cluster membership of each tensor ele-
ment. Nevertheless, different clusters may be overlapped with each
other, and decomposing overlapped ones at the same time will lead
to a (locally) suboptimal solution. Only clusters that do not contain
the same tensor element can be simultaneously decomposed. We
thus alternate among all clusters to respectively decompose one
cluster at each iteration, while leaving the decomposed results of
other clusters unchanged.

More formally, suppose that a cluster c =
[
c1 · · · cN

]
is se-

lected for decomposition at the current iteration. Its core tensor Zc

and basis matrices U1,c, . . . ,UN,c will be updated at this itera-
tion, while those of other clusters and the cluster membership of
each tensor element remain unchanged. To achieve this goal, we
first compute the residual tensor of cluster c, namely Rc, by

Rc = A
N¡

n
n=1

MT
n,c −

∑
c′∈C
c′ 6=c

(
Zc′

N¡

n
n=1

MT
n,cUn,c′

)
, (12)

where the elements in the membership matrix Mn,c are defined as

∀i1, ∀i2,
(
Mn,c

)
i1i2

=

{
1, if i1 = (Mn,c)i2 ,

0, otherwise,
(13)

and (Mn,c)i2 denotes the i2-th element of the set Mn,c that is de-
fined as

Mn,c =
{
i ∈ {1, . . . , In}

∣∣ cn ∈ {c(k)n,i

}Kn

k=1

}
. (14)

The elements ofMn,c are in fact the indices of mode-n sub-tensors
that are assigned to the mode-n cluster subset Cn,cn . In other

1In brief, OMP selects a nonzero element by minimizing the error with re-
spect to the current residual, while OLS instead minimizes the total resid-
ual error. Therefore, OMP is likely to find a worse locally optimal solution,
since the values of previously selected nonzero elements are not allowed to
change values during the selection process.
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words, if the mode-n cluster indices for the i-th mode-n sub-tensor
include cn, i should be a member of Mn,c. Therefore, decompos-
ing Rc using N -SVD will obtain new Zc and {Un,c}Nn=1, while
keeping the zero elements in the basis matrices of cluster c as zeros
and updating their nonzero elements at the same time.

4. IMPLEMENTATION ISSUES

This section discusses the practical issues of MK-CTA, including
performance bottlenecks and how to improve them in the clustering
and decomposition stages (Section 4.1), the initial guess of the de-
composed results of each cluster (Section 4.2), and suggestions on
how to set the parameters of MK-CTA and their limitations (Sec-
tion 4.3).

4.1 Performance Improvement Techniques

The offline computational costs of MK-CTA are higher than pre-
vious multilinear models. In our implementation, the input tensor
is partitioned into blocks and stored on the hard disk as [Wang
et al. 2005], while the decomposed results of each cluster are in-
stead stored in the main memory. Therefore, two of the major per-
formance bottlenecks of MK-CTA are the pseudoinverse computa-
tion in the clustering stage and frequent disk read/write operations
for out-of-core computation in both clustering and decomposition
stages. In the following two subsections, we will discuss how to
accelerate the pseudoinverse computation and briefly describe the
proposed block partition and disk access schemes.

4.1.1 Pseudoinverse Computation. To solve Eq. (4) in the
clustering stage, we should prevent computing the pseudoinverse
of Z(Kn)

n,i , since its size is frequently very large. Fortunately, by em-

ploying the identity that
(
Z

(Kn)
n,i

)†
=
((
Z

(Kn)
n,i

)T
Z

(Kn)
n,i

)†(
Z

(Kn)
n,i

)T ,
the objective function in Eq. (4) can be reformulated as

ufn
(
A〈n,i〉

)
Z

(Kn)
n,i

((
Z

(Kn)
n,i

)T
Z

(Kn)
n,i

)†(
Z

(Kn)
n,i

)T
ufn
(
A〈n,i〉

)T
.

(15)
In this way, we only need to compute the pseudoinverse of a much
smaller matrix

(
Z

(Kn)
n,i

)T
Z

(Kn)
n,i and can further reuse the result of

ufn
(
A〈n,i〉

)
Z

(Kn)
n,i .

For Eq. (15), we have to compute ∀i,∀k, ufn
(
A〈n,i〉

)
Ẑ

(k)
n and

∀k, ∀k′,
(
Ẑ

(k)
n

)T
Ẑ

(k′)
n , which in fact can be performed in the re-

duced tensor space. This means that Ẑ(1)
n , . . . , Ẑ

(Cn)
n are not actu-

ally derived at all, since computing them requires to respectively
reconstruct the contribution of each cluster and often results in a
lot of large sparse matrices that may need to be stored out of core.
We instead apply the identities that

ufn
(
A〈n,i〉

)
ufn
(
Ẑc

)T
= ufn

(
A〈n,i〉

N¡

n′
n′=1
n′ 6=n

UT
n′,c

)
ufn
(
Zc

)T
, (16)

ufn
(
Ẑc

)
ufn
(
Ẑc′
)T

= ufn

(
Zc

N¡

n′
n′=1
n′ 6=n

UT
n′,c′Un′,c

)
ufn
(
Zc′
)T
, (17)

which can be easily verified by the relation between the mode-n
product and the Kronecker product [De Lathauwer et al. 2000].
Eqs. (16) and (17) particularly allow the computation of Eq. (15) to
be executed in core as much as possible. Note that if Kn′ = 1 for
all n′ 6= n, Eq. (17) can be directly evaluated as a zero matrix when
c 6= c′, namely ∀c 6= c′, ufn

(
Ẑc

)
ufn
(
Ẑc′
)T

= 0. This will lead to

a more efficient process for MK-CTA if hard clustering is applied
along all or most modes of A.

For greedy search, the objective function in Eq. (11) can be simi-
larly reformulated as Eq. (15). Thus, the results of ufn

(
A〈n,i〉

)
Ẑ

(k)
n

and
(
Ẑ

(k)
n

)T
Ẑ

(k′)
n also can be reused and only need to be computed

once throughout the clustering process for the n-th mode.

4.1.2 Block Partition and Disk Access Schemes. Another most
critical performance bottleneck of MK-CTA is frequent disk
read/write operations. In order to maximize disk access efficiency
as much as possible, tasks should be carefully scheduled. Recall
that in our implementation, A is partitioned into blocks that are
stored on the disk. It is highly likely that elements of a cluster reside
in multiple blocks, while at the same time a single block contains
elements of more than one cluster. Evaluating Eq. (16) for different
clusters thus may require to repeatedly read the same block from
the disk. In the decomposition stage, frequently reading/writing the
same block is also unavoidable, since it is difficult to divide the
decomposition process of a cluster into subprocesses that can be
separately computed and then combined.

To reduce the number of disk access operations, we initially par-
tition the input tensor into smaller blocks with an appropriate size
before executing MK-CTA, and employ the most-recently-used re-
placement strategy in both clustering and decomposition stages to
cache previously accessed blocks in the main memory. This allows
a parallel or multithreaded process that can simultaneously com-
pute the results of multiple clusters. To exploit parallel processing,
note that only non-overlapped clusters can be decomposed at the
same time in the decomposition stage. In our implementation, the
block size is determined by

∀n,Bn = dαIn/Cne, (18)

where Bn denotes the mode-n rank of each block, and α is a user-
defined constant. We have found that this scheme tends to reduce
the total number of disk access operations for each block. The con-
stant α was set to 3 in our experiments, but other values in the
interval [2, 4] would also be good choices.

4.2 Initial Guess

In the clustering stage of MK-CTA, we need the core tensor and
basis matrices of each cluster to iteratively update the basis matri-
ces of clustered modes. Similar to many alternating least-squares
algorithms, MK-CTA may suffer from a bad initial guess of the
decomposed results of each cluster. We thus first obtain an initial
guess by performing MK-CTA, with Kn = 1 for all n, for several
iterations. As discussed in Section 4.1.1, this will quickly derive
an initial solution. After that, we can further refine the core tensor
and basis matrices of each cluster by setting K1, . . . ,KN to their
original values. In this way, the remaining problem is how to gener-
ate initial clustering seeds for clustered modes. In our experience,
common initial clustering techniques, as those proposed in [Tsai
and Shih 2012, Section 5.1], often work very well in practice.

4.3 Parameter Suggestions

Many parameters of MK-CTA need to be manually and empirically
tuned for specific purposes. For C1, . . . , CN , there is no limitation
on their values.Cn generally depends on the input data and needs to
be fine-tuned. A large value mainly increases approximation qual-
ity, memory requirements, and offline computational costs, but has
a small impact on rendering times.
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For K1, . . . ,KN , there is also no limitation on their values. Typ-
ically, setting Kn to 2 or 3 is adequate to generate high-quality im-
ages in practical real-time applications. A value larger than 3 usu-
ally leads to negligible quality improvement and memory overhead,
but will substantially increase rendering times and offline compu-
tational costs.

For R1, . . . , RN , their values are constrained to be the same for
each cluster, but still can be different for each mode. Otherwise,
MK-CTA cannot refine the basis matrices of each cluster in the
clustering stage. It is suggested to set Rn in the range of [1, 4] for
interactive or real-time rendering rates. A large value may slightly
raise offline computational costs, but will considerably increase
rendering times, approximation quality, and memory requirements.

Note that the parameters of N -SVD, particularly the reduced
rank of each mode, can be adopted as a reference guide for the
parameters of MK-CTA. It has been found that the approximation
errors ofN -SVD and MK-CTA tend to be close to each other, when
Cn ·Rn is equal to the mode-n reduced rank for N -SVD. We thus
first perform N -SVD on the input tensor and fine-tune the param-
eters of N -SVD until the desired approximation error is reached.
For all n, we then select values of Kn and Rn from the suggested
ranges and finally determine Cn from the reduced ranks for N -
SVD. If the decomposed result is not satisfying, K1, . . . ,KN and
R1, . . . , RN have to be further fine-tuned according to the require-
ments of an application.

In summary, it is suggested to first set R1, . . . , RN in the range
of [1, 4] and K1, . . . ,KN to 2 or 3 for high-performance render-
ing, since these parameters are the most important key to effi-
cient runtime reconstruction. Then, determineC1, . . . , CN to reach
a desired compression ratio or approximation quality for a good
tradeoff. If the offline approximation time is really a concern, set
C1, . . . , CN to small values instead and increase R1, . . . , RN for
similar approximation quality, at the cost of a lower rendering rate.

5. EXPERIMENTAL RESULTS

In this section, we present the experimental results of MK-CTA on
three common types of large-scale multidimensional visual datasets
in computer graphics and visualization, including BTFs, TVLFs,
and TVVD. We also compare MK-CTA to previous tensor-based
methods:N -SVD and K-CTA. In the experiments of MK-CTA, we
adopted optimal search to sparsely cluster the n-th mode of an input
tensor when Kn was less than 3. Otherwise, greedy search was in-
stead employed for that mode. The raw and approximated data were
respectively stored as 32-bit and 16-bit floating point numbers. Ex-
periments and simulation timings were conducted and measured on
a workstation with an Intel i7-3930K CPU, an NVIDIA GeForce
GTX TITAN graphics card, and 16 GB main memory. The approx-
imation quality is evaluated by the signal-to-noise ratio (SNR).

5.1 Bidirectional Texture Functions

Overview. BTFs [Dana et al. 1999] can be regarded as a gen-
eralization of BRDFs to faithfully capture spatial variations of ap-
pearance and reflectance on real-world object surfaces. Over the
last decade, the enormous amount of BTF data has stimulated
the development of modern approximation algorithms [Filip and
Haindl 2009; Tsai et al. 2011], among which multilinear models
[Tsai and Shih 2012; Vasilescu and Terzopoulos 2004; Wang et al.
2005; Wu et al. 2008] have been proved as one category of the most
efficient analysis methods for BTFs.

(a) Raw data (b) N -SVD (c) N -SVD (d) K-CTA (e) MK-CTA
(1.98 GB) (3.8 MB) (12.06 MB) (12.4 MB) (12.15 MB)

Fig. 4. Reconstructed images of approximated BTFs (”Lego” c©Volumet-
ric Surface Texture Database) based on different multilinear models. The
top row shows reconstructed images; the bottom row shows absolute differ-
ence images (scaled by a factor of 6).

Experiment settings. In our experiments, a BTF2 is organized
as a fourth order tensor3 and approximated using N -SVD, K-CTA,
and MK-CTA. The tensor is sparsely clustered along only the view
mode for K-CTA, but along both illumination and view modes for
MK-CTA.

Rendering process. Before rendering, we follow the sugges-
tion in [Tsai and Shih 2012] to reconstruct the x and y modes of
each cluster core tensor and organize the results into a core texture,
so that hardware texture filtering on GPUs for the two modes can be
exploited for efficient rendering. The nonzero elements of mode-ωl

and mode-ωv basis matrices are packed into a basis texture, and an-
other index texture is employed to store the cluster indices of each
sampled illumination/view direction.

At runtime, the approximated BTFs based on the three multilin-
ear models are reconstructed on GPUs for high-performance ren-
dering. The BTF rendering process of MK-CTA is mostly the same
as that of K-CTA. For a BTF texel, we simply access the index
and basis textures in the pixel shader for corresponding elements
in basis matrices according to current illumination and view direc-
tions, obtain associated cluster core tensors from the core texture,
and then reconstruct the illumination and view modes of the BTF
texel to determine the final shading color.

Results. Table I shows the statistics of BTF approximation for
different multilinear models. From this table, MK-CTA outper-
forms N -SVD and K-CTA, especially for the BTF ”Lego”. With
similar compression ratios, MK-CTA is superior to N -SVD in
terms of approximation errors and runtime performance. At similar
rendering rates, MK-CTA also can achieve higher approximation
quality than N -SVD and K-CTA. Since there are large data varia-
tions among both illumination and view modes of the BTF ”Lego”,
N -SVD cannot fully exploit the coherence among the two modes
with small reduced ranks. Although K-CTA sparsely clusters the
view mode to allow an accurate and efficient reconstruction for that
mode, data variations along the illumination mode still cannot be
effectively approximated for high-performance rendering.

Figure 4 compares the reconstructed BTF images based on the
three tensor-based methods. Readers may refer to supplemental

2The BTF datasets were provided in courtesy of Dr. Xin Tong and collected
from the Volumetric Surface Texture Database [Koudelka et al. 2003], http:
//vision.ucsd.edu/kriegman-grp/research/vst/.
3The four modes include the illumination direction ωl, the view direction
ωv , and the 2D spatial coordinates

(
x, y

)
of a texel.
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Table I. Statistics of BTF approximation. For the same BTF, we compare different multilinear models at similar rendering rates and/or
with similar compression ratios. For N -SVD, two different parameter configurations are shown: one at a similar rendering rate to

MK-CTA; the other with a similar compression ratio. As for K-CTA, only one parameter configuration is listed, since it satisfies both
comparison conditions. The rendering rates were measured under 4 directional lights with a screen resolution of 1024×768.

BTF Hole Lego
Object model Bunny Teapot

Iωl
×Iωv×Ix×Iy 81×81×128×128 120×90×128×128

Raw data (GB) 1.2 1.98
Algorithm N -SVD N -SVD K-CTA MK-CTA N -SVD N -SVD K-CTA MK-CTA

Rωl
×Rωv×Rx×Ry 24×24×80×80 32×40×80×80 32×4×80×80 4×4×80×80 20×24×64×64 32×48×64×64 32×4×64×64 4×4×64×64

Cωl
×Cωv×Cx×Cy 1×1×1×1 1×1×1×1 1×10×1×1 8×10×1×1 1×1×1×1 1×1×1×1 1×12×1×1 8×12×1×1

Kωl
×Kωv×Kx×Ky 1×1×1×1 1×1×1×1 1×3×1×1 3×3×1×1 1×1×1×1 1×1×1×1 1×3×1×1 3×3×1×1

Approximated data (MB) 7.09 15.69 16.03 15.73 3.8 12.06 12.4 12.15
SNR (dB) 19.39 24.33 22.82 24.34 13.36 17.23 17.03 21.69

Approximation time (min.) 3.25 3.32 32.92 50.95 26.92 33.17 115.23 142.95
Rendering rate (FPS) 65.17 28.62 67.39 63.64 142.34 27.14 143.56 139.49
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= Kωv = 3 (b) Cωl

= 8, Kωl
= Kωv (c) N -SVD (Rωl
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= 32,

(Kωl
,Kωv ∈ {1, . . . , 5}) Kωv = 3), MK-CTA (Cωl

= 8, Kωl
= Kωv = 3)

Fig. 5. Reconstruction errors of approximated BTFs (”Lego” c©Volumetric Surface Texture Database) based on different multilinear models. Major param-
eters are shown under each subfigure. Readers may refer to Table I for other parameter settings. Subfigures (a), (b): different configurations of MK-CTA;
subfigure (c): comparison of the SNR versus the data amount among different configurations of N -SVD, K-CTA, and MK-CTA.

materials for high-resolution images and more experimental re-
sults. The visual quality of reconstructed images for MK-CTA is
higher than that for N -SVD and K-CTA. Among the three algo-
rithms, only MK-CTA can faithfully capture the specular reflection
in the top of the raw image. Figure 5(a) further plots the SNR of
MK-CTA versus the number of clusters for the view mode, with
which the SNR almost increases linearly. In Figure 5(b), we show
the effects of changing the number of clusters for the view mode
and/or the numbers of mixture clusters for both illumination and
view modes. Note that the SNR quickly becomes saturated when
the numbers of mixture clusters increase, making 2 or 3 a favor-
able choice. Moreover, Figure 5(c) compares the SNR versus the
data amount among different configurations of the three multilinear
models. It shows that MK-CTA can achieve lower approximation
errors than N -SVD and K-CTA with similar compression ratios.

In Figure 6, we demonstrate the rendered images of the three
tensor algorithms. Under 4 directional light sources, both K-CTA
and MK-CTA can achieve rendering rates that are 3∼5 times faster
than 30 frames per second (FPS), while the runtime performance of
N -SVD is only near real-time with a similar compression ratio. As
Figure 6(c) shows, we change the parameters ofN -SVD to achieve
a similar rendering rate, but at the cost of a much lower SNR. Fur-
thermore, the rendered image of MK-CTA exhibits the highest vi-
sual quality among the three methods. The high-frequency visual
features in the BTF, particularly at regions with sharp shadows and
specular highlights, can be accurately preserved by MK-CTA.

Environment lighting. In addition to common light sources,
approximated BTFs based on MK-CTA also can support com-
plex high-dynamic-range (HDR) environment lighting4 (Figure 7).
Specifically, we precompute the convolution between an environ-
ment map and the mode-ωl basis matrices of an approximated BTF.
To allow interactively rotating the lighting environment, the con-
volution results for different orientations of the environment map
have to be precomputed. We parameterize the orientation using
the yxz (yaw-pitch-roll) Euler angles and store the final precom-
puted results as a 6D table5 (packed into a 3D texture for rendering
on GPUs). In the experiments, we sample 32∼80 different values
for each Euler angle, which usually consumes 100∼250 MB GPU
memory for each pair of an approximated BTF and an environment
map.

Conclusion. For BTF approximation, both K-CTA and MK-
CTA are more favorable than N -SVD at similar rendering rates
and/or with similar compression ratios. Note that K-CTA and MK-
CTA are comparable under the two comparison conditions, but fre-
quently K-CTA achieves slightly higher rendering rates and MK-
CTA holds lower approximation errors in terms of the SNR.

4The HDR environment maps were collected from the Light Probe Image
Gallery [Debevec 1998], http://www.pauldebevec.com/Probes/.
5The 6 dimensions are respectively the color channel, the reduced rank in-
dex, the cluster index, and the Euler angles.

ACM Transactions on Graphics, Vol. 34, No. 5, Article 157, Publication date: October 2015.



10 • Yu-Ting Tsai

(a) Rendered image of MK-CTA (b) Raw data (c) N -SVD (d) N -SVD (e) K-CTA (f) MK-CTA
(1.98 GB, <0.01 FPS) (3.8 MB, 13.36 dB, (12.06 MB, 17.23 dB, (12.4 MB, 17.03 dB, (12.15 MB, 21.69 dB,

142.34 FPS) 27.14 FPS) 143.56 FPS) 139.49 FPS)

Fig. 6. Rendered images of approximated BTFs (”Lego” c©Volumetric Surface Texture Database) based on different multilinear models at similar rendering
rates (subfigures (c), (e), (f)) and/or with similar compression ratios (subfigures (d), (e), (f)). Readers may refer to supplemental materials for full-size images.

(a) Bunny with ”Hole” (b) Teapot with ”Lego”
(98.64 FPS) (236.62 FPS)

Fig. 7. Rendered images of approximated BTFs based on MK-CTA with
HDR environment lighting. (BTF ”Hole” c©Dr. Xin Tong, BTF ”Lego”
c©Volumetric Surface Texture Database, model ”Bunny” c©Stanford 3D

Scanning Repository, HDR maps ”Grace Cathedral” and ”Uffizi Gallery”
c©Light Probe Image Gallery)

5.2 Time-Varying Light Fields

Overview. Light fields [Levoy 2006; Levoy and Hanrahan
1996] have been widely used in image-based methods for render-
ing 3D images of a real-world static scene from arbitrary views.
They provide a discrete representation for radiance along rays that
enter/leave a free space at arbitrary positions and in different direc-
tions. To extend light fields for dynamic scenes, a TVLF [Bando
et al. 2013] is often described as a 5D function of animated 2D im-
age slices. A comprehensive survey on light fields is beyond the
scope of this article. More information can be found in [Levoy
2006; Shum et al. 2007].

Experiment settings. In our experiments, a TVLF6 is orga-
nized as a fourth order tensor7 and approximated using N -SVD,
K-CTA, and MK-CTA. We do not decompose the time mode for the
three methods, since the temporal coherence in the adopted TVLFs
is very low. Nevertheless, one can always choose to decompose

6The TVLF datasets were collected from the Synthetic Light Field Archive
[Wetzstein et al. 2011; Wetzstein et al. 2012], http://web.media.mit.edu/
∼gordonw/SyntheticLightFields/.
7The four modes respectively correspond to the 2D spatial coordinates(
x, y

)
of an image pixel, the slice index s, and the time (or frame index) t.

Note that each slice is the resulting image from an observer position that is
often parameterized by a 2D point on a plane for light fields. Nevertheless,
we collapse the two modes into only one, namely the slice mode, since the
number of observer positions is quite small for the utilized TVLFs.

Table II. Statistics of TVLF approximation. We compare different
multilinear models with similar compression ratios. The rendering

rates were measured with a screen resolution of 840×525.
TVLF AnimatedBunnies

Ix×Iy×Is×It 840×525×27×89
Raw data (GB) 11.84

Algorithm N -SVD K-CTA MK-CTA
Rx×Ry×Rs×Rt 264×166×17×89 4×169×17×89 4×4×2×89
Cx×Cy×Cs×Ct 1×1×1×1 63×1×1×1 60×40×9×1
Kx×Ky×Ks×Kt 1×1×1×1 2×1×1×1 2×2×2×1

Approximated data (MB) 380.0 379.88 380.3
SNR (dB) 29.03 28.9 28.95

Approximation time (min.) 65.03 344.15 758.93
Rendering rate (FPS) 0.05 1.26 56.24

the time mode when temporal coherence is high. For K-CTA, the
tensor is sparsely clustered along the x mode, while along the x,
y, and slice modes for MK-CTA. To reduce offline computational
costs, we apply MK-CTA (or K-CTA) to the spatially downsam-
pled TVLF, upsample the decomposed basis matrices, and further
refine the upsampled results by performing MK-CTA (or K-CTA)
again on the input TVLF with the original spatial resolution.

Rendering process. Similar to the BTF rendering process of
MK-CTA, the core tensor of each cluster is packed into a core tex-
ture. If the time mode of a TVLF is decomposed, we first recon-
struct that mode before packing for efficient temporal interpolation
at runtime. The nonzero elements in mode-x, mode-y, and mode-s
basis matrices and the cluster indices of each sampled x, y, or s
coordinate are also stored in basis and index textures. At runtime,
we first linearly interpolate the time mode of the core texture on
GPUs to create a new core texture for a novel time from 5 nearby
sampled frames. Then, the image of a novel view is obtained by
linearly interpolating the reconstructed results of 4 nearest sampled
views in the pixel shader, where the reconstruction for a sampled
view is performed based on the basis, index, and time-interpolated
core textures.

Results. Table II lists the statistics of TVLF approximation
based on different tensor representations. Figure 1 also shows the
rendered images of the three algorithms. With similar compression
ratios, MK-CTA holds the highest rendering rate. Note that the ren-
dering performance ofN -SVD and K-CTA is even slower than that
of raw data (1.79 FPS), which means that the two methods are in-
adequate to real-time high-quality TVLF rendering. Unlike BTF
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approximation, the SNR of MK-CTA is similar to N -SVD and K-
CTA, since it becomes more difficult to find a good (locally) opti-
mal solution when the numbers of clusters are large. Nevertheless,
the visual quality of MK-CTA is still the best by manually inspect-
ing the rendered images in Figure 1. The result of N -SVD exhibits
strong ringing effects around object boundaries, which are less per-
ceptible in the result of MK-CTA. Since there are large variations
along the slice mode of the TVLF, N -SVD fails to efficiently ap-
proximate image slices from different observer positions. This will
lead to the ringing effects, where the reconstructed slice from an
observer position implicitly shows the ghosts of other slices. By
contrast, MK-CTA can sparsely cluster the slice mode to improve
intra-cluster coherence and significantly reduce the ringing effects.
As for K-CTA, there are some visible vertical seams in its result,
since the x mode of the TVLF is clustered but not accurately ap-
proximated. Although increasing the number of mixture clusters
can alleviate the artifacts, it will moderately increase approxima-
tion and rendering times. Spatial filtering is another common tech-
nique to solve this issue, but also with an inevitable performance
hit at runtime. Note that MK-CTA sometimes smoothes out sharp
visual features in a few regions, while N -SVD and K-CTA can
more accurately preserve them. For example, refer to the first row
in Figure 1 for the highlights on the hip of the cyan bunny. Never-
theless, the strong ringing effects and visible seams are still more
perceptible and annoying.

Conclusion. For TVLF approximation, MK-CTA can achieve
significantly higher rendering rates than N -SVD and K-CTA with
similar compression ratios. Nevertheless, the offline computational
costs of MK-CTA are also the highest among the three algorithms.

5.3 Time-Varying Volume Data

Overview. TVVD [Wang et al. 2010] play an important role
in studying the dynamic aspects of a scientific phenomenon. Vi-
sualizing TVVD would help scientists to effectively explore, an-
alyze, and understand the underlying physical process behind the
phenomenon. Since the amount of TVVD has drastically increased
over the last decades, TVVD need to be compressed for efficient
visualization at interactive rates. Traditional methods usually rely
on vector quantization [Schneider and Westermann 2003] and pre-
defined basis decomposition, such as wavelets [Guthe and Straßer
2001] and the discrete cosine transform [Lum et al. 2002], to ef-
ficiently compress and decompress TVVD. Recently, tensor-based
algorithms have been applied to approximate large-scale volume
data [Suter et al. 2011; Suter et al. 2013; Wang et al. 2005; Wu
et al. 2008] and reported a lot of positive results and feedback due
to their data dependent nature and flexibility. Moreover, the decom-

posed data based on multilinear models can be coherently stored
without repacking to improve cache performance. Sparse represen-
tation [Gobbetti et al. 2012] is also another appropriate choice of
volume data approximation. Nevertheless, MK-CTA additionally
allows voxel block/cluster sizes to vary and integrates tensor ap-
proximation to exploit the coherence within a voxel block/cluster.
Interested readers may find more information on volume data ap-
proximation in [Balsa Rodrı́guez et al. 2014; Wang et al. 2010].

Experiment settings. In this article, a TVVD8 set is organized
as a fourth order tensor9 and approximated using N -SVD, K-CTA,
and MK-CTA. For K-CTA and MK-CTA, we first employ N -SVD
to extract a single mode-t basis matrix and then perform K-CTA
and MK-CTA on the decomposed core tensor to sparsely cluster
the specified modes. This can significantly reduce offline compu-
tational costs, but only has a negligible impact on approximation
errors. The spatial downsampling process, as described in Section
5.2, is also applied to further reduce offline costs. Note that one can
always choose to sparsely cluster the time mode for lower approx-
imation errors when using MK-CTA. Nevertheless, since both of-
fline and runtime performance will also be substantially decreased
and only a portion of the approximated TVVD are required to ren-
der a single frame, we do not see the need to sparsely cluster the
time mode.

Rendering process. Like TVLFs, we first reconstruct the time
mode of each cluster core tensor, pack the results into a core tex-
ture, and then create the basis and index textures for MK-CTA
before rendering. At runtime, we adopt a GPU-based volume ray
caster with pre-integration [Engel et al. 2001], early ray termina-
tion, and empty-space skipping10 [Krüger and Westermann 2003].
For a non-empty sampled position, the corresponding data value
is reconstructed from the basis, index, and time-interpolated core
textures in the pixel shader.

8The TVVD were provided in courtesy of Prof. Kwan-Liu Ma, from the
Time-Varying Volume Data Repository, http://www.cs.ucdavis.edu/∼ma/
ITR/tvdr.html.
9The four modes are respectively the 3D spatial coordinates

(
x, y, z

)
of a

voxel and the time (or frame index) t.
10We first reconstruct the TVVD from the approximated data. The empty
space is then determined from the reconstructed TVVD based on the
adopted transfer function, and a separate data structure is precomputed for
each time frame. When combined with pre-integration, we employ over-
lapped blocks, where there is an overlap of (at least) two voxels at each
block boundary, to precompute the empty space.

Table III. Statistics of TVVD approximation. For the same TVVD, we compare different multilinear models at similar rendering rates or with
similar compression ratios. The rendering rates were measured with a screen resolution of 640×480.

TVVD TurbJet TurbVortex
Ix×Iy×Iz×It 258×258×208×150 256×256×256×98
Raw data (GB) 7.74 6.13

Algorithm N -SVD N -SVD K-CTA K-CTA MK-CTA N -SVD N -SVD K-CTA K-CTA MK-CTA
Rx×Ry×Rz×Rt 4×4×6×96 38×38×68×96 6×6×2×96 38×38×2×96 2×2×2×96 6×6×6×64 64×64×64×64 6×2×6×64 64×2×64×64 2×2×2×64
Cx×Cy×Cz×Ct 1×1×1×1 1×1×1×1 1×1×32×1 1×1×32×1 18×18×32×1 1×1×1×1 1×1×1×1 1×30×1×1 1×30×1×1 30×30×30×1
Kx×Ky×Kz×Kt 1×1×1×1 1×1×1×1 1×1×2×1 1×1×2×1 2×2×2×1 1×1×1×1 1×1×1×1 1×2×1×1 1×2×1×1 2×2×2×1

Approximated data (MB) 0.05 18.07 0.64 18.15 18.0 0.05 32.1 0.45 31.89 31.65
SNR (dB) 2.72 19.42 8.18 18.41 19.33 7.94 40.59 10.77 40.01 40.49

Approximation time (min.) 5.12 30.5 116.78 200.07 329.77 2.52 16.47 139.85 205.73 413.55
Rendering rate (FPS) 96.05 0.28 94.98 4.16 93.26 31.05 0.02 29.79 0.39 30.87
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(a) Rendered images of MK-CTA (b) Raw data (c) N -SVD (d) N -SVD (e) K-CTA (f) K-CTA (g) MK-CTA
(7.74 GB, 3.79 FPS) (0.05 MB, 2.72 dB, (18.07 MB, (0.64 MB, 8.18 dB, (18.15 MB, (18.0 MB, 19.33 dB,

96.05 FPS) 19.42 dB, 0.28 FPS) 94.98 FPS) 18.41 dB, 4.16 FPS) 93.26 FPS)

Fig. 8. Rendered images of approximated TVVD (”TurbJet” c©Time-Varying Volume Data Repository) based on different multilinear models at similar
rendering rates (subfigures (c), (e), (g)) or with similar compression ratios (subfigures (d), (f), (g)). The top and bottom rows respectively show rendered
images with and without shaded isosurfaces. Readers may refer to supplemental materials for full-size images and our accompanying video for animations of
TVVD.

Results. Table III shows the statistics of TVVD approximation
for N -SVD, K-CTA, and MK-CTA. Figure 8 further compares the
rendered images of the three algorithms at similar rendering rates
or with similar compression ratios. Besides using transfer func-
tions, we additionally extract isosurfaces with diffuse lighting in
some rendered images. At similar rendering rates, both N -SVD
and K-CTA fail to capture the important characteristics of a com-
plex TVVD set, while MK-CTA provides the lowest approxima-
tion error and the best visual quality for smoothly navigating the
TVVD through space and time. Moreover, the extracted isosurfaces
of MK-CTA are accurate and smooth without sacrificing sharp vi-
sual features, further demonstrating its potentials for TVVD ap-
proximation. With similar compression ratios, the visual quality of
the three algorithms is almost indistinguishable, but only MK-CTA
can achieve real-time rendering performance, while it takes a few
or more seconds for N -SVD and K-CTA to render a single frame.
Although the SNR of N -SVD is the highest among the three meth-
ods, the difference over MK-CTA is small and negligible.

Conclusion. For TVVD approximation, N -SVD and K-CTA
are inadequate to interactive visualization applications. Only MK-
CTA can provide both real-time rendering rates and high visual
quality, at the cost of longer approximation times.

5.4 Discussions and Limitations

MK-CTA generally allows a better tradeoff among visual quality,
compression ratios, and rendering rates than previous tensor-based
methods. With similar compression ratios, MK-CTA can outper-
form N -SVD and K-CTA in other two aspects, especially for the
experimental results of TVLFs. At similar rendering rates, MK-
CTA also can provide higher visual quality with an appropriate
compression ratio. When there are large data variations among
more than one dimension of an input dataset,N -SVD requires large
reduced ranks for these dimensions to obtain high-quality results,
which will significantly reduce runtime rendering performance. K-

CTA alleviates this issue by clustering one of these dimensions,
but the reduced ranks of other dimensions may be still too large
to reach real-time rendering rates. By contrast, MK-CTA can clus-
ter all dimensions and employ large numbers of clusters for high-
quality results, rather than large reduced ranks. This particularly
leads to efficient reconstruction of elements in the dataset and high-
performance photorealistic rendering.

Although the parameters of MK-CTA need to be fine-tuned for
each dataset, the suggested tuning guidelines and limitations of im-
portant parameters are described in Section 4.3. With similar com-
pression ratios, we have found that the approximation errors of dif-
ferent parameter configurations of MK-CTA are close to each other
in practice. By fixing the numbers of mixture clusters, changing the
numbers of clusters and reduced ranks to reach similar compression
ratios only has a small impact on approximation errors, but still
significantly influences offline computational costs and rendering
rates. This shows that the derived solutions are robust to parameter
configurations. Users can freely change parameters for a specific
purpose, without worrying about obtaining a poor solution.

The offline computational costs of MK-CTA are higher than pre-
vious multilinear models, but more efficient runtime performance
can be achieved at the same time. As discussed in [Fout and Ma
2007; Balsa Rodrı́guez et al. 2014], this asymmetric rendering pro-
cess is usually desired. To reduce the offline costs into a reasonable
range, we also propose several performance improvement tech-
niques. For in-core datasets, the decomposition stage is often the
most critical performance bottleneck. When optimal search is em-
ployed and the number of mixture clusters is larger than 2, the clus-
tering stage immediately becomes another major bottleneck. As for
out-of-core datasets, disk access times usually dominate the offline
performance. We believe that a GPU-accelerated implementation
and a high-performance parallel disk system could further decrease
the offline computational costs. Nevertheless, the scalability issue
of MK-CTA is still left as our future work.
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Compared to wavelet-based methods, MK-CTA can produce
overlapped blocks/clusters with varying sizes and members. This
allows the decomposed results of MK-CTA to be more data-
dependent and compact, since intra-cluster coherence can be im-
proved via clustering. Although the decomposed results of MK-
CTA may lead to less spatial locality of memory accesses in the
rendering process, we have found that nearby elements tend to be
assigned into the same cluster if they are highly coherent. In the op-
posite case, wavelet-based methods still group nearby elements and
often fail to efficiently approximate them. The benefit of better spa-
tial locality instead may be overwhelmed by the increase in mem-
ory storage. Nevertheless, it needs a thorough analysis and compar-
ison of wavelet- and tensor-based methods to reach a conclusion.
Additionally, wavelet-based methods can capture multiscale visual
features among data, while MK-CTA intrinsically does not support
this characteristic. Integrating hierarchical models with MK-CTA
is left as a future research direction.

For a multidimensional dataset, the data distributions along some
dimensions may be different from those along other dimensions,
but we treat all dimensions equally in MK-CTA to simplify the pro-
posed algorithm. Since the employed multiway clustering method
implicitly assumes the same type of distribution along each dimen-
sion, inappropriate cluster membership may be obtained when the
assumption is violated. It is possible to extend MK-CTA to over-
come this drawback, which is left as future work. Nevertheless,
our experimental results show that MK-CTA works well in practice
even if treating all dimensions equally. We believe that this is due to
the merit of sparse representation, since inappropriate cluster mem-
bership can be moderately compensated by mixing the decomposed
results of different clusters.

Note that MK-CTA does not always ensure a globally optimal
solution to Eq. (3). Even a local optimum is guaranteed only when
optimal search is applied in the clustering stage. According to our
experience, MK-CTA often converges to a local optimum within 6
iterations. We have also observed that the increases in the numbers
of clusters or mixture clusters have a small impact on the conver-
gence rate, since the proposed method for the initial guess works
very well in practice. Nevertheless, the increases in clustering pa-
rameters still substantially raise the computational costs of optimal
search and the decomposition stage at each iteration, leading to a
longer approximation time. If greedy search is employed instead,
MK-CTA may not eventually converge at all. In this case, we can
keep track of the approximation error at the end of the clustering
stage and simply restore the decomposed results of the previous
iteration when the approximation error increases.

6. CONCLUSIONS

This article presents a generalized multilinear model, namely MK-
CTA, to allow a compact, efficient, and accurate representation for
rendering large-scale multidimensional visual datasets. MK-CTA
overcomes the major drawback of previous tensor-based methods
to sparsely cluster a multidimensional dataset along more than one
dimension. This novel multiway sparse clustering concept is the
key to high-performance photorealistic data-driven rendering, since
intra- and inter-cluster coherence among different dimensions of
the input data can be well exploited. Moreover, the experimental
results of the three common types of complex multidimensional vi-
sual datasets, including BTFs, TVLFs, and TVVD, further demon-
strate the promising potentials of MK-CTA over N -SVD and K-
CTA.

Although not shown and discussed in this article, we believe that
MK-CTA is not limited to spatially- or time-varying visual datasets.

It is actually a general and efficient learning/analysis method for
various multidimensional scientific datasets in real-time applica-
tions, especially when data variations are large among multiple di-
mensions and only a portion of the whole dataset is needed at one
time.

In the future, we would like to investigate the possibilities of ap-
plying MK-CTA to additional multidimensional data-driven appli-
cations beyond computer graphics, such as face recognition, image
retrieval, and document classification. We are also interested in im-
proving the scalability of MK-CTA to solve some issues about big
data analysis.

APPENDIX

To sparsely cluster the n-th mode, each mode-n sub-tensor is sepa-
rately processed by fixing the core tensor and basis matrices (other
than the mode-n one) of each cluster. For the i-th mode-n sub-
tensor, Eq. (3) can be simplified into the following constrained
least-squares optimization subproblem:
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where the orthonormal constraints on the mode-n basis matrix of
each cluster are omitted, since they can be satisfied by the post-
process in Section 3.5.3.

To solve Eq. (19), optimal search employs a brute-force method
to derive an optimal solution from all possible Kn-combinations
of {1, . . . , Cn}. For a possible case of the Kn-combinations, for
example c(1)n,i, . . . , c

(Kn)
n,i , the constraints in Eq. (19) can be satisfied

by setting the i-th row of Un,c to zeros for all c /∈
Kn⋃
k=1

C
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(k)
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.

In this way, Eq. (19) can be rewritten in the matrix form as the
following unconstrained least-squares optimization problem:
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which comes from the equivalence between the Frobenius norm
of a mode-n sub-tensor and the `2 norm of the mode-n unfolded
vector of that sub-tensor [Tsai and Shih 2012, Appendix A.1]. By
identifying that the optimal solution to u
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n,i is the least-squares

estimation of u(Kn)
n,i for Z(Kn)
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is proved.

Then, by substituting u
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where we expand the `2 norm into the matrix form and apply the
identity that Z(Kn)

n,i =
((
Z

(Kn)
n,i

)†)T(
Z

(Kn)
n,i

)T
Z

(Kn)
n,i . Since the first

term in Eq. (22) is a constant, minimizing Eq. (21) is equivalent to
maximizing the second term in Eq. (22). The objective function in
Eq. (4) thus is proved.
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